Biomacromolecules 2018, 19, 555-5
Release Time:2019-12-28



The clinical translation of protein drugs that act intracellularly is limited by the absence of safe and efficient intracellular protein delivery vehicles. Here, pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels (HA-cNGs) were designed and investigated for targeted intracellular protein delivery to CD44 overexpressing MCF-7 breast cancer cells. HA-cNGs were obtained with a small size of 176 nm from an equivalent mixture of hyaluronic acid conjugates with GY(EIAALEK)3GC (E3) and GY-(KIAALKE)3GC (K3) peptides, respectively, at pH 7.4 by nanoprecipitation. Circular dichroism (CD) proved the formation of coiled-coil structures between E3 and K3 peptides at pH 7.4 while fast uncoiling at pH 5.0. HA-cNGs showed facile loading of cytochrome C (CC) and greatly accelerated CC release under mild acidic conditions (18.4%, 76.8%, and 91.4% protein release in 24 h at pH 7.4, 6.0, and 5.0, respectively). Confocal microscopy and flow cytometry displayed efficient internalization of CC-loaded HA-cNGs and effective endosomal escape of CC in MCF-7 cancer cells. Remarkably, HA-cNGs loaded with saporin, a ribosome inactivating protein, exhibited significantly enhanced apoptotic activity to MCF-7 cells with a low IC50 of 12.2 nM. These coiled-coil peptide-cross-linked hyaluronic acid nanogels have appeared as a simple and multifunctional platform for efficient intracellular protein delivery.


L.L. Ding, Y. Jiang, J. Zhang*, H.A. Klok, and  Z.Y.  Zhong*, pH-Sensitive Coiled-Coil Peptide-Crosslinked Hyaluronic Acid  Nanogels: Synthesis and Targeted  Intracellular Protein Delivery to CD44 Positive Cancer Cells, Biomacromolecules 2018, 19, 555-5.