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Abstract
Combinatorial chemotherapy, which has emerged as a promising treatment modality for
intractable cancers, is challenged by a lack of tumor-targeting, robust and ratiometric dual drug
release systems. Here, docetaxel-loaded cRGD peptide-decorated redox-activable micellar
mertansine prodrug (DTX-cRGD-MMP) was developed for targeted and synergistic treatment of
B16F10 melanoma-bearing C57BL/6 mice. DTX-cCRGD-MMP exhibited a small size of ca.
49 nm, high DTX and DM1 loading, low drug leakage under physiological conditions, with
rapid release of both DTX and DM1 under a cytoplasmic reductive environment. Notably, MTT
and flow cytometry assays showed that DTX-cRGD-MMP brought about a synergistic antitumor
effect to BI6F10 cancer cells, with a combination index of 0.37 and an ICsq over 3- and 13-fold
lower than cRGD-MMP (w /o DTX) and DTX-cRGD-Ms (w/o DM1) controls, respectively. In
vivo studies revealed that DTX-cRGD-MMP had a long circulation time and a markedly
improved accumulation in the B16F10 tumor compared with the non-targeting DTX-MMP
control (9.15 versus 3.13% ID/g at 12 h post-injection). Interestingly, mice treated with DTX-
cRGD-MMP showed almost complete growth inhibition of B16F10 melanoma, with tumor
inhibition efficacy following an order of DTX-cCRGD-MMP > DTX-MMP (w/o
c¢RGD) > cRGD-MMP (w/o0 DTX) > DTX-cRGD-Ms (w/o DM1) > free DTX. Consequently,
DTX-cRGD-MMP significantly improved the survival rates of B16F10 melanoma-bearing mice.
Importantly, DTX-cRGD-MMP caused little adverse effects as revealed by mice body weights
and histological analyses. The combination of two mitotic inhibitors, DTX and DM, appears to
be an interesting approach for effective cancer therapy.

Supplementary material for this article is available online
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1. Introduction

Combinatorial chemotherapy with two or more drugs that
inhibit the growth of cancer cells using different mechanisms
is a successful approach to treat various cancers in the clinic
[1, 2]. The combinatorial effect of dual or multiple che-
motherapeutics might effectively slow cancer cell mutation,
overcome drug resistance, and increase therapeutic outcomes
[3]. In practice, however, combination chemotherapy is
challenged by the varying water solubility, pharmacokinetic
profiles and membrane transport properties of different
anticancer drugs [4—6]. In addition, administration of two or
more free drugs could possibly lead to higher toxic side
effects [7]. Co-delivery of different drugs in a single nano-
carrier system may afford a more effective and safer combi-
nation cancer therapy, as both drugs are simultaneously
delivered to the tumor sites and off-site side effects are
reduced [8—11]. The physical encapsulation of multiple drugs
in a single nanocarrier is, nevertheless, associated with several
challenges including low drug loading content and poor sta-
bility [12]. In past years, polymeric prodrugs have appeared
as a versatile platform for combination cancer chemotherapy
[13-18]. For example, Zhou et al reported that 10-hydroxy-
camptothecin (HCPT)-loaded doxorubicin (DOX) conjugated
PEG-SS-PCL micelles exhibited a high therapeutic efficacy in
the MCF-7/ADR tumor model and effectively prevented lung
metastasis [17]. Haam er al reported that poly(L-lysine)-
paclitaxel (PLL-PTX) and hyaluronic acid-gemcitabine (HA-
GEM) conjugates showed a synergistic inhibition effect in
HuCCT1 tumor xenografts [18].

Mertansine (DM1), a strong antiproliferative che-
motherapeutics toward over 60 types of cancer cell lines, has
received intensive interest in the development of antibody-
maytansinoid conjugates (AMCs) for treating various malig-
nancies such as breast cancer and melanoma [19-22]. DM1 is
a powerful antimitotic agent that binds with strong affinity to
tubulins, inhibits the tubulins polymerization and arrests cell
mitosis [23-25]. However, the clinical application of DM is
limited by its high systemic toxicity and small therapeutic
window [26]. We recently found that cRGD-functionalized
micellar mertansine prodrug (cRGD-MMP) based on poly
(ethylene  glycol)-b-(poly(trimethylene  carbonate)-grafi-
SSDM1) (PEG-P(TMC-g-SSDM1)) and cRGD peptide
functionalized PEG-P(TMC-g-SSDM1) had a high drug
loading content, better drug toleration and significantly
improved therapeutic effects in the B16F10 melanoma model
as compared to free DM1 [27].

Here, we report that cRGD-MMP loading with docetaxel
(DTX), a well-known mitotic inhibitor that blocks cell divi-
sion by interfering with spindle formation during cell mitosis,
for targeted combinatorial chemotherapy of malignant
B16F10 melanoma-bearing C57BL/6 mice (Scheme 1). DTX
has been used for the treatment of non-small cell lung cancer,
prostate cancer and melanoma [28-30]. Given their different
working mechanisms, co-administration of DM1 and DTX in
a single nanocarrier system might result in a synergistic
treatment effect with reduced side effects. cRGD peptide has
shown a strong binding toward .35 integrin-overexpressed

B16F10 melanoma cells [31-34]. Notably, our results
demonstrated easy loading of DTX into cRGD-MMP and
redox-triggered ratiometric release of DTX and DM1. DTX-
loaded cRGD-MMP (DTX-cRGD-MMP) exhibited syner-
gistic growth inhibition of B16F10 cancer cells in vitro and
treatment of B16F10 melanoma in vivo.

2. Materials and methods

2.1. Materials

N>-deacetyl-N5-(3-mercapto- 1-oxopropyl)-maytansine (DM,
Suzhou Brightgene Co., Ltd), docetaxel (DTX, Beijing
ZhongShuo Pharmaceutical Technology Development Co.,
Ltd), annexin V-FITC/propidium iodide (PI) apoptosis
detection kit (MesGen Biotech), 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT, Sigma) and 4'6-dia-
midino-2-phenylindole dihydrochloride (DAPI, Sigma) were
used as received. PEG-P(TMC-g-SSDM1) and cRGD-PEG-P
(TMC-g-SSDM1) were synthesized according to our previous
report [27].

2.2. Preparation of DTX-cRGD-MMP and DTX-MMP

DTX-loaded cRGD-decorated polymeric micellar mertansine
prodrug (DTX-cRGD-MMP) was prepared from PEG-P
(TMC-g-SSDM1) and  cRGD-PEG-P(TMC-g-SSDM1)
copolymers (w/w, 80/20) at a DTX theoretical loading
content (DLC) of 28.5 wt.% via a solvent exchange method.
Typically, 0.2ml of DMF solution (5mgml~") of PEG-P
(TMC-g-SSDM1) and cRGD-PEG-P(TMC-g-SSDM1) mix-
ture (w/w, 80/20) with 40 1 DTX solution (10 mgml ")
was added dropwise to 0.8 ml of PB buffer (10 mM, pH 7.4)
and stirred for another 2 h, followed by extensive dialysis
(Spectra/Pore, MWCO 7000) against PB for 12h. DTX-
loaded PEG-P(TMC-co-PDSC) micelles (DTX-Ms), DTX-
loaded cRGD-decorated PEG-P(TMC-co-PDSC) micelles
(DTX-cRGD-Ms), and DTX-loaded PEG-P(TMC-g-SSDM1)
micellar mertansine prodrug (DTX-MMP) were prepared in
the same manner as DTX-cRGD-MMP. The amounts of DM 1
and DTX were quantified by HPLC. DLC of DTX and DM1
was calculated according to the following formula:

DLC (wt.%) = (weight of DTX or DM1 /weight of drug-
loaded micelle) x 100.

2.8. In vitro antitumor performance and synergistic analysis of
DM1 and DTX combination

MTT assays were performed to study the in vitro antitumor
effects of DTX-cRGD-MMP, DTX-MMP as well as free
DMI1 and DTX combination. Briefly, BI6F10 cells were
grown in 96-well plates at 3 x 10° cells per well overnight.
The different drug formulations at concentrations of
0.005-1 pg DM1 equiv./ml or 0.005-1 ug DTX equiv./ml
were added. After 4 h, the medium was replaced by 100 pl
fresh medium. The cells were cultured for another 44 h. 20 ul
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) solution (5 mg ml~") was added. The cells were
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Scheme 1. DTX-cRGD-MMP for targeted and combinatorial treatment of B16F10 melanoma cells via synergistic mitotic arrest.

further cultured for 4 h, the medium was removed, and 150 ul
DMSO was added to dissolve the MTT-formazan crystals.
The absorbance of the above solution in each well was
recorded using a microplate reader (Thermo Fisher, Multiscan
FC USD4600) at 492 nm. The cell viability (%) was deter-
mined by comparing the absorbance at 492 nm with control
wells containing only cell culture media. The results were
presented as the average + standard deviation (n = 4).

ICsop was determined from the dose response curve.
Combination index (Cls() values were calculated according to
the following formula: Clso = D;/Dy,; + D,/Dpp, where
Dy, and Dy, are the ICs, concentrations of each drug alone,
and D; and D, are the ICs, concentrations of each drug in the
combination. Clsq value of >1, =1 and <1 indicates antag-
onistic, additive, and synergistic effects, respectively. Clsq
values ranging from 0.2-0.8 are considered validated [35].

2.4. Cell apoptosis assays

The cell apoptosis assay of DTX-cRGD-MMP was performed
in B16F10 cells using annexin V—FITC /propidium iodide
(PD) staining. In brief, B16F10 cells at 3 x 10* cells per well
were seeded in a 12-well plate overnight. Free DTX, free
DM1, DTX + DMI1, DTX-cRGD-Ms, cRGD-MMP, DTX-
cRGD-MMP or DTX-MMP was added (dosage: 0.1 ug DM1
equiv./ml or 0.06 ug DTX equiv./ml). Cells without treat-
ment were used as a control. After 4h, the medium was
replaced and the cells were cultured in 1000 pl fresh medium
for another 20 h. The cells were harvested and collected by
centrifugation, washed with PB three times, re-suspended in
binding buffer, and labeled with annexin V—FITC and a PI
apoptosis detection kit according to the instructions of man-
ufacturer. After incubation in the dark for 15 min, cells were
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analyzed on a BD FACS Calibur flow cytometer (Beckton
Dickinson, USA) using Cell Quest software.

2.5. In vivo pharmacokinetic studies of DTX-cRGD-MMP and
DTX-MMP

The mice were all handled under the guidelines approved by
the Soochow University Laboratory Animal Center and the
Animal Care and Use Committee of Soochow University. The
pharmacokinetic studies of DTX-cRGD-MMP and DTX-
MMP were performed in normal C57BL/6 mice (dosage:
5mg DMI1 equiv./kg or 3 mg DTX equiv./kg). The blood
samples were collected at 0.083, 0.5, 0.75, 1, 2, 4, 8, 12, or
24h post-injection of DTX-cRGD-MMP or DTX-MMP.
0.2 ml of methanol was added, the mixture was ultrasonicated
for 15 min, and 0.5 ml of DMSO was added to extract DTX
and DM1 prodrug under shaking (200 rpm) at 37 °C for one
day followed by centrifugation (18 krpm, 20 min). To the
supernatant was added excess DTT (50 mM) to completely
release DM1 and DTX. The amounts of DM1 or DTX were
quantified by HPLC. The results were presented as the
average * standard deviation (n = 4). The elimination half-
life (t,/,,3) was determined by fitting the experimental data
using the Origin 8 exponential decay 2 model: y = A; X
exp(—x/t;) + A, x exp(—x/t;) + yo and taking t;/, 3
= 0.693 1,.

2.6. In vivo combination therapy of melanoma

The in vivo antitumor efficacy and safety of DTX-cRGD-
MMP and DTX-MMP were evaluated in B16F10 melanoma-
bearing mice. 6 x 10° BI6F10 cells in 50 ul of PBS were
subcutaneously injected in the hind flank of C57BL/6 mice.
When the tumor sizes reached around 30—50 mm? after 5 days
implantation, the mice were weighted and randomly divided
into six groups (n = 8) and this day was designed as day O.
The mice were intravenously administrated with PBS, free
DTX, DTX-cRGD-Ms, cRGD-MMP, DTX-MMP or DTX-
cRGD-MMP (dosage: 1.2 mg DMI equiv./kg or 0.7 mg DTX
equiv./kg). The mice were treated every two days for a total
of three injections. Tumor sizes were recorded using calipers
and calculated based on the following formula:
V =10.5 x L x W?, where L and W are the tumor length and
width, respectively [36]. The relative tumor volumes were
ratios of tumor sizes at different time points to that at day O.
The body weights of all mice were weighed every two days
throughout the entire treatment period. At day 10, three mice
of each group were sacrificed and tumors were harvested,
weighed and photographed. The remaining five mice of each
group were used to monitor the survival rates. Tumor inhi-
bition rate (TIR) was calculated according to the following
formula: (1- (mean tumor weight of drug treated group/mean
tumor weight of saline treated group)) x 100.

Table 1. Characteristics of DTX-cRGD-MMP and DTX-MMP.

DLC (wt.%)°

Formulations Size* (d. nm) PDI* DMl DTX
DTX-cRGD-MMP 49 0.12 21.7 12.5
DTX-MMP 45 0.10 21.7 13

* determined by DLS.
* determined by HPLC.

3. Results and discussion

3.1. Preparation and redox-triggered drug release of DTX-
cRGD-MMP

PEG-P(TMC-g-SSDM1) and cRGD-PEG-P(TMC-g-SSDM1)
were synthesized as reported previously [27]. As shown in
table S1, available at stacks.iop.org/NANO/28/295103/
mmedia, PEG-P(TMC-co-PDSC) was obtained with a mod-
erate My, /M, of 1.6 and TMC and PDSC degree of poly-
merization (DP) of 40 and 4.5, respectively. The thiol-
disulfide exchange between PEG-P(TMC-co-PDSC) and
DM1 yielded PEG-P(TMC-g-SSDM1) with a DM1 content
of 24.9 wt.%. Mal-PEG-P(TMC-co-PDSC) was prepared with
a moderate My,/M,, of 1.5 and TMC and PDSC DP of 40 and
4.8, respectively (table S1). The Michael-type conjugation of
Mal-PEG-P(TMC-co-PDSC) with cyclo(RGDfC) peptide
followed by thiol-disulfide exchange with DMI1 furnished
cRGD-PEG-P(TMC-g-SSDM1) with a quantitative cRGD
functionality and DM1 content of 24.4 wt.%.

DTX-loaded cRGD-MMP was readily prepared from
PEG-P(TMC-g-SSDM1) and cRGD-PEG-P(TMC-g-SSDM1)
copolymers (w/w, 80/20) via a solvent exchange method.
Notably, HPLC revealed a decent DTX loading content of
12.5 wt.% (table 1), likely due to the existence of strong
interactions between DTX and DM1. In comparison, a DTX
loading content of less than 10 wt.% was generally reported
for micellar systems [37-39]. DLS showed that DTX-cRGD-
MMP had a small size of 49 nm with a narrow PDI of 0.12
(figure 1(A)), which was further confirmed by a TEM image
(figure 1(B)). The non-targeting DTX-MMP was obtained
with a similar size (~45 nm) and DTX loading content (13 wt.
%) to DTX-cCRGD-MMP (table 1). In addition, we have also
prepared DTX-loaded PEG-P(TMC-co-PDSC) micelles
(DTX-Ms, w/o DMI and targeting), DTX-loaded cRGD-
decorated PEG-P(TMC-co-PDSC) micelles (DTX-cRGD-Ms,
w/o DM1), cRGD-MMP (w/o DTX) and MMP (w/o DTX
and targeting) as controls. DTX-Ms and DTX-cRGD-Ms had
a size of ca. 60 nm and DTX loading content of ca. 12.5 wt.%
(table S2). cRGD-MMP and MMP had a mean size of
ca. 40 nm.

The in vitro release studies exhibited fast release of DM1
from DTX-cRGD-MMP in the presence of 10 mM GSH, in
which over 50% and 80% of DM1 was released in 6 and 24 h,
respectively (figure 2). In contrast, less than 15% DM1 was
released in 24 h under a non-reductive condition. Interest-
ingly, almost the same release profile was observed for DTX.
This GSH-triggered DM1 and DTX release from DTX-
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Figure 1. Size distribution of DTX-cRGD-MMP determined by DLS (a) and TEM (b).
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Figure 2. Cumulative release of DM1 and DTX from DTX-cRGD-
MMP in PB buffer (pH 7.4, 10 mM) at a micelle concentration of
0.8 mgml™', either with or without 10 mM GSH. The results are
presented as mean =+ standard deviation (n = 3).

cRGD-MMP is due to cleavage of disulfide bonds linking
DMI1 to polycarbonate, similar to hyaluronic acid-SS-DM1
prodrug [40] and others [41-43]. Figure S1 shows that non-
targeting DTX-MMP had a similar DM1 and DTX release
profile to DTX-cRGD-MMP, suggesting that cRGD peptide
decoration does not affect their drug release behaviors. These
results demonstrate that both DTX-cRGD-MMP and DTX-
MMP are stable with little drug leakage under physiological
condition while quickly and simultaneously releasing DM1
and DTX under a reductive condition, ensuring that the
released DTX and DMI1 maintain approximately the same
drug ratio over time. It has been a great challenge to achieve
ratiometric delivery and release of the two drugs [44, 45],
which is, nevertheless, important for most combination ther-
apy [46—49]. Huang et al achieved precise ratiometric release
of gemcitabine and cisplatin over 96 h from poly(lactide-co-
glycolide) (PLGA) nanoparticles that demonstrated enhanced
treatment of a stroma-rich bladder tumor [46].

Table 2. ICsy and Clsy of DTX and DM in different formulations
against B16F10 cells.

ICso (ugml™")

Formulations DTX DM1 Clsg
DTX 0.39 — —
DM1 — 0.092 —
DTX+DM1 0.047 0.079  0.98
DTX-Ms 0.78 — —
MMP — 0.43 —
DTX-MMP 0.049 0.081  0.25
DTX-cRGD-Ms 0.37 — —
cRGD-MMP — 0.16 —
DTX-cRGD-MMP  0.028 0.047  0.37

3.2. Synergistic antitumor effect of DTX-cRGD-MMP in vitro

The in vitro synergistic antitumor effect of DTX and DM1 in
different formulations was investigated using MTT assays in
malignant BI6F10 melanoma cells. Figure S2 shows that
blank micelles (i.e. Ms and cRGD-Ms) without any drug had
little cytotoxicity. All drug formulations exhibited a dose-
dependent cytotoxicity (figure S3). Notably, DTX-cRGD-
MMP displayed significantly enhanced antitumor activities, in
which DTX-cRGD-MMP had over 3- and 13-fold lower ICs
than cRGD-MMP and DTX-cRGD-Ms controls, respectively
(table 2 and figure 3(a)). The CI was calculated, according to
Chou-Talalay method [50], to be 0.37 and 0.25 for DTX-
cRGD-MMP and DTX-MMP, respectively (figure S3(c)),
confirming the strong synergistic antitumor effect of DTX and
DMI. It is likely that the reduction triggered fast and ratio-
metric release of DTX and DM1 and significantly improves
the synergistic killing effect. In recent years, microtubule-
inhibiting agents including DTX and PTX have been com-
bined with various chemotherapeutics such as DOX and Pt
for enhanced growth inhibition of different cancer cells
[51-54]. For instance, Chen et al reported that co-delivery of
DOX and PTX resulted in a synergistic effect toward A549
human lung cancer cells with a Cls, of 0.57 [53]. Farokhzad
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Figure 3. Synergistic antitumor effect of DTX-cRGD-MMP in B16F10 melanoma cells by MTT assays (n = 4) (a) and flow cytometry
analysis (dosage: 0.1 ug DM1 equiv./ml, 0.06 ug DTX equiv./ml) (b).

et al reported that AlO-aptamer-decorated DTX-loaded
polymeric Pt-prodrug nanoparticles showed several times
higher ICsy in LNCaP prostate cells than their respective
single drug counterparts [55]. The results here showed that
co-delivery of DTX and DM1, both of which inhibit tumor
cell growth by inhibiting mitosis, is an effective strategy to
achieve a combinatorial anticancer effect. It should be noted
that no synergistic effect was observed for free DM1 and
DTX (figure S3(a)), probably resulting from rapid inter-
nalization and dominant role of free DM1. Both DTX-cRGD-
Ms and cRGD-MMP exhibited lower ICs, than the corresp-
onding non-targeting controls (table 2), supporting that cRGD
peptide decoration enhances the in vitro antitumor activity. It
should be noted that as an initial proof-of-concept study on
the combinatorial anticancer effect of DTX and DM1, here we
have not optimized the drug ratio.

To further confirm the synergistic antitumor effect of
DTX-cRGD-MMP, B16F10 cancer cells following annexin
V-FITC/PI staining were quantitatively studied by flow
cytometry. Figure 3(b) shows that DTX-cRGD-Ms (w/o
MMP) and cRGD-MMP (w/o DTX) resulted in 5.8% and

7.1% apoptotic cells, respectively, which was much lower
than 18.5% observed for DTX-cRGD-MMP. It should be
noted that non-targeting DTX-MMP also induced 11.4%
apoptosis (figure S4). In comparison, in line with the MTT
results, no synergistic effect was discerned for free DM1 and
DTX (figure S4). It is clear that DTX-cRGD-MMP possesses
a strong synergistic antitumor effect in BI6F10 melanoma
cells.

3.3. In vivo pharmacokinetics and biodistribution of DTX-
cRGD-MMP

In order to study their in vivo pharmacokinetics, DTX-cRGD-
MMP and DTX-MMP were intravenously injected into
C57BL/6 mice at 5mg DMI equiv./kg. DMI and DTX
levels in blood at designated time intervals were quantified by
HPLC measurements. Considering that free DM1 has a low
maximum-tolerated dose (MTD) of 1 mg kg, which renders
HPLC determination of blood DMI1 concentration difficult,
pharmacokinetic studies of free DM1 and DTX were not
attempted. The pharmacokinetics of DM1 followed a typical
two-compartment model (figure 4(a)). Interestingly, both
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Figure 5. In vivo biodistribution of DTX-cRGD-MMP (a) and DTX-MMP (b) in B16F10 tumor bearing C57BL/6 mice following 2, 6 and

12 h intravenous injection (5 mg DMI equiv./kg, n = 4).

DTX-cRGD-MMP and DTX-MMP had a long circulation
time with an elimination half-life (¢, ) of 4.03 and 4.50h,
respectively (table S3). The area under the curve (AUC) was
2.26 and 2.79 pug - h/ml for DTX-cRGD-MMP and DTX-
MMP, respectively. Notably, DTX in both DTX-cRGD-MMP
and DTX-MMP exhibited similar pharmacokinetic behaviors
to DM1 (figure 4(b)), indicating little DTX leakage though
DTX was physically encapsulated. The similar pharmacoki-
netics of DTX and DM1 warrants a steady DM1 and DTX
ratio in DTX-cRGD-MMP during the blood circulation. In
addition, little difference in drug clearance was observed for
DTX-cRGD-MMP and DTX-MMP, suggesting that cRGD
decoration hardly alters the pharmacokinetics.

The in vivo biodistribution of DTX-cRGD-MMP and
DTX-MMP was evaluated in B16F10 melanoma-bearing
C57BL/6 mice. The mice were sacrificed at 2, 6 or 12 h post-
injection of DTX-cRGD-MMP or DTX-MMP (5 mg DM1
equiv./kg). As shown in figure 5(a), DTX-cRGD-MMP
rapidly accumulated in the tumor, reaching 4.95% ID/g at 2 h
post-injection, and increasing to 8.18% ID/g at 6h. The
amount of DMI in the tumor reached 9.15% ID/g at 12h
post-injection. In comparison, much lower tumor

accumulation of DM1 was observed for the non-targeting
DTX-MMP, in which DM1 level maintained at about 3% ID/
g at 2, 6 or 12 h post-injection (figure 5(b)). It should further
be noted that DTX-cRGD-MMP has similar accumulation in
the major organs to DTX-MMP. The plot of tumor-to-normal
tissue (T/N) distribution ratios displayed that DTX-cRGD-
MMP led to a 2-3 fold better tumor accumulation than DTX-
MMP (figure S5). The enhanced tumor accumulation of
DTX-cRGD-MMP likely results from the specific affinity of
cRGD peptide to the 33 integrins that are overexpressed on
tumor neovasculatures as well as BI6F10 melanoma
cells [32, 56].

3.4. Combinatorial chemotherapy of B16F10 melanoma-
bearing C57BL/6 mice

The in vivo therapeutic performances of DTX-cRGD-MMP
and non-targeting DTX-MMP were studied in B16F10 mel-
anoma-bearing C57BL/6 mice at 1.2 mg DM1 equiv./kg and
0.7mg DTX equiv./kg for a total of three injections. Mice
treated with PBS, free DTX, DTX-cRGD-Ms, and cRGD-
MMP was applied as controls. As expected, PBS group
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Figure 6. Synergistic treatment of B16F10 melanoma-bearing C57BL/6 mice with DTX-MMP and DTX-cRGD-MMP. Free DTX, DTX-
cRGD-Ms and cRGD-MMP were used as controls. The drug was given on day 0, 2 and 4 for a total of three injections (dosages: 1.2 mg DM1
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(b) and weight (c) of typical tumor blocks collected from different treatment groups on day 10 (n = 3). (d) Survival rates of mice in different

treatment groups.

displayed rapid tumor growth (figure 6(a)). The free DTX
group showed modest tumor growth inhibition. DTX-cRGD-
Ms demonstrated somewhat better tumor suppression than
free DTX. Considering that free DM1 has a low MTD of
I mgkg ', treatment with free DM was not attempted.
Notably, DTX-cRGD-MMP exhibited almost complete tumor
growth inhibition, which was obviously better than the
cRGD-MMP control. Moreover, DTX-MMP also revealed
effective inhibition of tumor growth, though to a lesser extent
than DTX-cRGD-MMP. The tumor inhibition efficacy fol-
lows an order of DTX-cRGD-MMP > DTX-MMP > cRGD-
MMP > DTX-cRGD-Ms > free DTX. On day 10, three mice
in each group were sacrificed and tumors were collected,
weighed and photographed. The remaining five mice of each
group were used to monitor survival rates. The images of
tumors showed clearly that mice treated with DTX-cRGD-
MMP had the smallest size (figure 6(b)), supporting that
DTX-cRGD-MMP has the best tumor growth inhibition. The
co-delivery of rapamycin and cisplatin using anisamide-

functionalized PLGA nanoparticles was reported to greatly
enhance treatment of A375-luc melanoma-bearing mice
though continued tumor growth was observed [57]. The
DTX-cRGD-MMP group exhibited a superior tumor inhibi-
tion rate (TIR) of 98.2%, which was significantly higher than
that of DTX-cRGD-Ms (TIR: 42.4%) and cRGD-MMP (TIR:
84.5%) (figure 6(c)). Notably, DTX-MMP also exhibited a
great TIR of 92.7%. In comparison, co-delivery of DTX and
tanespimycin using HA-decorated PLGA nanoparticles pro-
duced a moderate TIR of 75%, which was significantly higher
than corresponding single drug formulations, in CD44 and
RHAMM-overexpressing SCC-7 squamous cell carcinoma
xenografts in nude mice [58]. The comparatively low TIR
observed for dual drug-loaded PLGA nanoformulations with
regard to DTX-cRGD-MMP is likely a result of slow drug
release. Our previous report revealed that cRGD-MMP at a
doubled DMI1 dose (24mg DMI equiv./kg) caused a
somewhat lower TIR in B16F10 melanoma than DTX-cRGD-
MMP [27], supporting synergistic tumor inhibition of DM1
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Heart

Figure 7. H&E staining assays of the major organs of mice from different treatment groups (DM1 dosage: 1.2 mgkg™'; DTX dosage:
0.7 mg kg™ ") (scale bar: 50 um). The images were acquired using Olympus BX41 microscope at 40x objective.

and DTX. This co-delivery of two mitosis-inhibiting agents
appears to be an interesting alternative strategy to reported
combinations such as DTX-cisplatin, PTX-DOX, DTX-DOX,
and cisplatin-DOX that combine mitosis inhibition and DNA
damage [56, 59, 60]. For example, Chen et al reported that
cRGD-targeting co-delivery of DTX and cisplatin exhibited a
remarkable synergistic effect toward B16F10 melanoma with
a TIR of 85.1% [56]. Discher et al reported that PTX and
DOX co-loaded polymersomes had better tolerance and tumor
suppression than the free drug cocktail in a subcutaneous
MDA-MB-231 human breast cancer model [59]. In line with
tumor inhibition results, the DTX-cRGD-MMP group showed
a greatly enhanced survival rate with a median survival time
of 34 days (figure 6(d)). In comparison, the DTX-cRGD-Ms,
cRGD-MMP and free DTX groups revealed shorter median
survival times of 21, 26 and 12 days, respectively. The better
survival rate of the DTX-cRGD-MMP group as compared to
the non-targeting DTX-MMP group signifies the active tar-
geting role of cRGD. No obvious body weight loss was
observed for all treatments over the entire experimental period
(figure S6), indicating that all formulations are well tolerated
by mice. The histological analyses using H&E staining dis-
played that DTX-cRGD-MMP brought about hardly any
damage to the vital organs (figure 7), suggesting that DTX-

cRGD-MMP possesses low systemic toxicity. All the above
results demonstrate that DTX-cRGD-MMP affords targeted
and synergistic treatment of B16F10 melanoma-bearing
C57BL/6 mice. DTX-cRGD-MMP with enhanced ther-
apeutic window and reduced systemic toxicity has appeared
as a promising nanoplatform for potent cancer chemotherapy.

4. Conclusion

We have developed a docetaxel-encapsulated, cRGD-deco-
rated polymeric micellar mertansine prodrug (DTX-cRGD-
MMP) for targeted combinatorial chemotherapy of malignant
B16F10 melanoma-bearing C57BL/6 mice. Notably, DTX-
cRGD-MMP has a small size, high loading of both DTX and
DMI, low drug leakage, and redox-triggered ratiometric
release of DM1 and DTX. The in vitro studies show that DM1
and DTX in DTX-cRGD-MMP induce a pronounced syner-
gistic antitumor effect in B16F10 cancer cells. DTX-cRGD-
MMP exhibits a long circulation time and reaches a remark-
ably high accumulation of 9.15% ID/g in B16F10 tumor at
12 h post-injection. Interestingly, DTX-cRGD-MMP demon-
strates a targeted and strong synergistic treatment of B16F10
melanoma-bearing mice, leading to significantly improved
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tumor inhibition and survival rate as compared to the non-
targeted control (DTX-MMP) as well as single drug for-
mulations (cCRGD-MMP and DTX-cRGD-Ms). It should
further be noted that DTX-cRGD-MMP causes little adverse
effects. This is a first proof-of-concept study on the combi-
natorial anticancer effect of DTX and DMI1 in vitro and
in vivo. The micellar mertansine prodrug provides a robust
nanoplatform for targeted combinatorial chemotherapy.
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