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REVIEW ARTICLE

Functionalization of soft materials for cardiac repair and regeneration

Drew Kuraitisa, Katsuhiro Hosoyamaa, Nick J. R. Blackburna, Chao Dengb, Zhiyuan Zhongb and
Erik J. Suuronena

aDivision of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Canada; bBiomedical Polymers Laboratory, and Jiangsu Key
Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, People’s Republic of China

ABSTRACT
Coronary artery disease is a leading cause of death in developed nations. As the disease pro-
gresses, myocardial infarction can occur leaving areas of dead tissue in the heart. To compensate,
the body initiates its own repair/regenerative response in an attempt to restore function to the
heart. These efforts serve as inspiration to researchers who attempt to capitalize on the natural
regenerative processes to further augment repair. Thus far, researchers are exploiting these repair
mechanisms in the functionalization of soft materials using a variety of growth factor-, ligand-
and peptide-incorporating approaches. The goal of functionalizing soft materials is to best pro-
mote and direct the regenerative responses that are needed to restore the heart. This review
summarizes the opportunities for the use of functionalized soft materials for cardiac repair and
regeneration, and some of the different strategies being developed.
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Introduction

Coronary artery disease represents a significant prob-
lem in developed nations. Disease progression leads to
a loss of blood flow in the heart and ultimately cell

death and loss of heart function. Initial clinical trials of
stem cell therapy to restore the heart have produced
modest results, often citing poor cell engraftment and
survival, or a lack of persistent beneficial effects [1].
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To address this, biomaterial therapies have emerged.
Soft materials are currently being tested, whether as
injectable hydrogels, meshes to wrap around a heart, or
scaffolds for implantation. Many studies have reported
them to be efficacious and safe and, to date, a few clin-
ical trials have been initiated to investigate their use in
patients for the treatment of ischemic cardiomyopathy
[2–5]. On their own, soft materials may have regenera-
tive effects, but they can be further modified to
enhance regenerative signaling; in other words, soft
materials may be functionalized. Such methods include
the incorporation of growth factors, ligands and pepti-
des, and have demonstrated success at restoring car-
diac perfusion and improving the natural stem cell
response in the damaged heart. Here, we will review
how the endogenous responses to myocardial infarc-
tion (MI) may be exploited for the functionalization of
soft materials aimed at enhancing cardiac regeneration.

Pathophysiology of heart disease

In order to design functional materials to treat heart
disease, one must first have an understanding of the
dysfunctional myocardium that develops after ische-
mic injury.

The physiological response to ischemic injury

Coronary artery disease persists as a leading cause of
death in developed nations [6,7]. Over time, the coron-
ary arteries that supply the heart with blood become
constricted, reducing local perfusion, impeding normal
heart function, and possibly leading to MI. Infarcted tis-
sue is hypoxic leading to a rapid loss of cardiomyocytes
through necrosis, and the accumulation of dead cells
and debris [8]. The myocardium then releases chemoat-
tractants to recruit circulating inflammatory and pro-
genitor cells, which are guided to the damaged regions
by cytokine, adhesion molecule and extracellular matrix
(ECM) signals [9]. The inflammatory cells participate in
the clearance of dead cells and debris and in the
recruitment of wound-healing cells [10,11]. Slightly
delayed is the progenitor cell response, whereby stem/
progenitor cells attempt to repair/regenerate the myo-
cardium [12–14]. Unfortunately, the stem cell response
is short-lived, results in poor accumulation of thera-
peutic cells in diseased tissue, and contributes minim-
ally to de novo cardiomyocytes [15–20]. Myofibroblast
activation also accompanies these changes leading to
the deposition of a rigid collagen-based scar [21–23],
which is a leading cause of diastolic dysfunction and
hinders myocardial regeneration [24].

The heart has long been considered an organ of ter-
minally differentiated cells; however, recent reports
suggest some capacity for self-renewal, providing hope
that adult human cardiomyocytes may be able to divide
and contribute to regenerating myocardium [25–28]. In
models of skeletal muscle injury and ischemia, it has
been shown that vascular regeneration precedes events
of muscle regeneration [29–31]. Thus, in order to
improve cardiac function, it may be first necessary to
restore perfusion, as this is a stepping-stone to further
recovery and regeneration [32–34]. To this effect, thera-
peutic angiogenesis centers on the hypothesis that myo-
cardial vasculature must be regenerated in order for
other tissue types (e.g. muscle) to regenerate [33,35].

Many different biomaterials are being investigated
to support cardiac regeneration. The heart’s endogen-
ous repair processes provide insights into what the
body is capable of doing on its own, albeit to a limited
extent. Much research has focused on exploiting these
endogenous regenerative axes. The goal is to design
therapies using biocompatible materials to minimize
host immune responses, allow for functional integration
and promote gradual replacement of constructs as tis-
sue turnover occurs [36–39].

Windows of opportunity and inspiration
for therapy

Following MI, several sequential and/or overlapping
repair processes are activated, presenting various win-
dows of opportunity for treatment and different strat-
egies to enhance endogenous regenerative efforts.

Inflammatory cell response

Within minutes of myocardial ischemia, inflammatory
cytokines are produced and secreted into the circula-
tion [40]. These signals aid in the recruitment of leuko-
cytes and monocytes. During this inflammatory phase is
an ideal time for the use of biomaterial therapy
designed to capitalize on the reparative potential of cir-
culating mononuclear cells. In particular, monocyte
chemoattractant protein-1 (MCP-1) recruits macro-
phages, some of which will adopt the anti-inflammatory
“M2” phenotype [41] and promote wound healing [42].
To aid cell recruitment, the vasculature of damaged
zones increases its adhesion molecule expression,
including vascular cell adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1) and E-selec-
tin [43–45]. These ligands can be incorporated into bio-
material therapy as a functionalization strategy to
promote cell recruitment and retention, as discussed in
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the section “Functionalization of soft materials for car-
diac repair”.

Growth factor response

Following the production of inflammatory cytokines,
there is coordinated release of growth factors [45–47].
Among the most studied are vascular endothelial
growth factor (VEGF), insulin-like growth factor-1 (IGF-
1), fibroblast growth factor-2 (FGF-2), hepatocyte
growth factor (HGF) and stromal cell-derived factor-1
(SDF-1). These cytokines are temporally released and
peak at different periods post-MI, aiding in cell recruit-
ment. FGF-2 is a potent stimulator of proliferation and
regulates angiogenic progenitor cell activity after infarc-
tion [48,49], while SDF-1 recruits progenitor cells to
ischemic tissue [46,48]. The incorporation of growth
factors may functionalize materials and better support
progenitor cell-mediated regeneration in the
infarcted heart.

Dynamic ECM changes

Immediately post-MI, soluble and tissue proteases accu-
mulate in the heart [50,51]. These proteases degrade
the local ECM, in particular structural collagens I and III
[52]. Imbalances in these proteases and their inhibitors
precede negative remodeling post-MI, a hallmark of
heart failure. Neutrophils and macrophages clear the
ECM debris in the MI heart, a process that occurs up to
a week post-MI [10,53]. As scar tissue is deposited, the
myocardium becomes less elastic and also less permis-
sive of cell infiltration [54,55]. Targeting the early events
that characterize ECM remodeling may be a window of
opportunity for biomaterial therapy prior to stable scar
formation [56–58]. For example, one group delivered a
hydrogel designed to release an inhibitor of tissue pro-
teases, TIMP-3, which restored MMP/TIMP imbalances in
the myocardium and improved ventricular dimensions
and cardiac function [56,57,59]. Therefore, the dynamic-
ally changing ECM environment post-MI presents a
period when structural preservation is needed, a stra-
tegic time and target for biomaterial therapy.

Soft materials for myocardial repair

Ideal physical properties of soft materials for
myocardial regeneration

The mammalian myocardium has an elastic modulus
that differs among species, but ranges from 20–40 kPa.
After infarction, elasticity is reduced and the myocar-
dium becomes stiffer [60]. This is an important consid-
eration since Engler et al. [54] have demonstrated that

the elastic modulus is an integral parameter in deter-
mining how well regenerating tissues respond to soft
materials. In another study, the authors showed that
the elastic modulus of a soft material determines the
cell type that differentiates from pluripotent cells cul-
tured on the material [61]. In other studies, they dem-
onstrated that the myocardium becomes too stiff after
infarction to support the function of new cardiomyo-
cytes [54]. Plotkin et al. tested several fibrinogen-based
materials of different stiffness in an infarct model,
showing that the material with the highest modulus
offered the best functional improvement [62]. It was
also reported that a supraphysiological hydrogel modu-
lus may be required to effectively attenuate LV remod-
eling [63]. Furthermore, Rodell et al. reported on a dual-
crosslinking hyaluronic acid hydrogel, which changes
modulus from <1 kPa to 40 kPa after local injection,
and demonstrated an improvement in LV remodeling
following application in an ovine MI model [64].

Aside from matrix stiffness, other important material
properties may also play a significant role in mediating
the repair process of the myocardium, such as topog-
raphy, porosity, and viscosity. For example, for pre-
formed scaffolds, modification of the porosity or surface
structure has been reported to be a strategy for improv-
ing the biointegrity of a material [65]. However, control
over topographical features is not as easily achieved for
injectable materials since their formation is determined
by the space within the tissue into which they are
injected. For injectable materials, adjustments made to
their viscosity or gelation time can be used to control
their injectability, retention and distribution upon injec-
tion [66,67]. Recently, some approaches to image mate-
rials transplanted into the heart have emerged, such as
ultrasound imaging, magnetic resonance imaging, posi-
tron emission tomography, and bioluminescence tech-
nologies [64,68,69]. Such methods are expected to
greatly advance our understanding of how the physical
properties of materials can affect their retention and
integration with the host tissue. For more in-depth
review about how the physical properties of materials
can be tuned for repairing the heart, we direct the
reader to other reviews on the topic [70–72].

Together, these studies support the hypothesis that
ideal materials for regeneration are ones that are recog-
nized as “natural” and “healthy” by the body, not only
in chemical composition, but also in physical properties.
Thus, soft materials should possess an elasticity that
closely matches that of native cardiac muscle, they
should allow for nutrient diffusion and cell infiltration,
and should integrate with the tissue and cells of
the myocardium.
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Ideal biochemical properties of soft materials for
myocardial regeneration

Ideal biochemical properties of soft materials for myo-
cardial regeneration are those that are considered to be
“natural”. Soft materials should be minimally immuno-
genic [73–75]. Immune responses may result from
exposure to non-biocompatible synthetic soft materials,
or to natural materials derived from species with poor
homology, for example. Even if the introduced foreign
material is made of components native to the host tis-
sue (as many hydrogels are), there will be a response
mounted by the immune system. Actions by the innate
and humoral immune systems are varied, and are
dependent on the material’s antigenicity, composition,
and physical properties such as density, porosity, tex-
ture, sterility, and physiologic binding sites or recogni-
tion sequences [76–78]. At one extreme, the foreign
body response leads to rapid surrounding of the intro-
duced material by macrophages, eventually forming a
granuloma that effectively walls off the material from
the surrounding tissue without any integration [79].
The other end of the spectrum is what researchers are
aiming for, i.e. to be able to create materials that illicit
minimal inflammation while promoting rapid integra-
tion. To achieve this, one needs to consider the mul-
tiple aforementioned factors that dictate the host
immune response. The entirety of the foreign body
response is beyond the scope of this review; however,
we direct the reader to recent reviews on this topic
[80–82]. Some important points that relate to the func-
tionalization of soft tissues are discussed below.

The first cell to respond to the transplantation of a
material is the neutrophil, followed by macrophages
and then interstitial cells and stem cells, depending on
the composition of the material [83,84]. Each of these
cell types is instrumental in determining the degree to
which the material will be integrated with the host vs.
degraded. If the material is derived from natural com-
ponents but contains residual DNA, granuloma and scar
formation is more likely. However, properly decellular-
ized products have a greater likelihood of being inte-
grated into the functional tissue [85]. Additionally,
materials that are better able to promote the anti-
inflammatory M2 macrophage phenotype are more
likely to be integrated into the host and will promote
repair [86,87]. Recently, D’Amore et al. showed that the
incorporation of decellularized cardiac ECM to a poly-
meric biodegradable patch led to a greater M2:M1
macrophage ratio, which was associated with decreased
scar, increased angiogenesis, and greater ventricular
compliance in the infarcted rat heart [88].

Consideration should also be given to the degrad-
ation profile of cardiac soft materials [89]. The heart dis-
plays a significantly greater rate of metabolism, when
compared to other tissues in the human body [90].
Materials should be recognized by host cells and
enzymes, and be subjected to natural degradation as
turnover proceeds. Examples of polymers that are com-
monly used in soft tissue engineering approaches, that
also fulfill the requirement for natural degradation and
turnover, are the synthetic poly(lactic-co-glycolic) acid
(PLGA), collagen derived from mammalian sources, and
alginate derived from sea kelp [73,75,91–93]. These
materials have also been investigated clinically and are
considered to have minimal-to-no adverse effects.
Notably, it has been shown that the degradation rate of
a material can affect the functional benefits associated
with its implantation in the infarcted myocardium [89].
In addition, one may wish to consider the degradation
products, such as matricryptins, which can be biologic-
ally active ECM fragments. For example, the collagen
matricryptin p1158/59 was shown to improve LV
remodeling and cardiac function post-MI [94]. In sum-
mary, a material’s immunogenicity and degradation
properties are factors involved in determining its in vivo
performance.

Functionalization of soft materials for
cardiac repair

Biofunctionalization serves to modify a material to
have a biological function, whether permanent or
temporary, while at the same time being biocompat-
ible. Many techniques are available for functionalizing
a material including passive soaking, electrospinning,
bioprinting, and nanoengineering. However, discus-
sing their technical challenges and unique advantages
and disadvantages is outside the scope of this review.
Therefore, we refer the reader to the following
reviews for more information on different fabrication
techniques [95–97]. In terms of cardiac repair, the
biological functions that bioengineers hope to impart
are those that promote the endogenous repair of the
ischemic myocardium, which are supportive of effica-
cious vascular and cardiomyocyte regeneration.
Interaction between the biomaterials and the cells it
supports is important for improving the efficacy of
the therapy [98,99], and thus functionalizing materials
may serve to further enhance this. Figure 1 summa-
rizes the strategies to functionalize soft materials for
myocardial applications.
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Ligand binding strategies

Ligand binding strategies aim to improve the retention
and engraftment of cells or the delivery of therapeutics
to host cells. For example, Shi et al. [100] incorporated
anti-stem cell antigen-1 (Sca1) antibodies into a colla-
gen scaffold (Sca1 is a marker of cardiac progenitor
cells). Transplantation of this scaffold into a heart defect
model yielded greater numbers of local Sca1þ cells,
improved vascular density and also provided evidence
of cardiomyogenesis [100]. Another group covalently
bound the ligand for L-selectin, a receptor found on cir-
culating angiogenic cells (CACs), to an injectable colla-
gen scaffold. Although tested in skeletal muscle, the
addition of this ligand improved progenitor recruit-
ment, accelerated reperfusion and also provided evi-
dence of myogenesis [31,101]. They have also reported
that CACs cultured on a collagen-based matrix conju-
gated with the matricellular protein CCN1 (CYR61/
CTGF/NOV family member 1, which targets integrin aV
and b3) exhibited enhanced cell proliferation, greater
incorporation into capillary-like structures in vitro, and
substantial blood flow recovery after intramuscular
injection into ischemic hind limbs in mice [102].

There are many other ligand-based approaches that
may be effective for promoting endogenous repair/
regeneration responses, but are yet to be tested in rele-
vant models of myocardial ischemia. For instance, the
antibody against CD34, an endothelial progenitor cell
marker, has been used to functionalize heparin/colla-
gen multilayer polymers to promote attachment,
growth and function of endothelial cells to vascular
stents [103]. This strategy may also be useful for attract-
ing circulating angiogenic progenitors to participate in
the repair/regeneration of the ischemic myocardium.
The West group has reported that immobilizing
ephrinA1 to poly(ethylene glycol) diacrylate hydrogels
enhanced endothelial cell tubule formation in vitro, and
promoted greater neovascularization in vivo, compared
to non-functionalized hydrogels [104,105]. Another
approach is to use the ligand-receptor system to deliver
a therapeutic product to cells in the myocardium. In
one study, a primary cardiomyocyte-specific ligand was
conjugated to bioreducible poly(cystamine bisacryla-
mide-diaminohexane) for targeted delivery of Fas siRNA
to inhibit apoptosis in cardiomyocytes [106]. In other
studies, polyamidoamine dendrimers were functional-
ized by conjugation with adenosine agonists, which

Figure 1. Strategies to functionalize soft materials for improved mobilization, recruitment, and engraftment of regenerative cells
for cardiac repair.
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were successfully applied to prevent the death of cardi-
omyocytes in apoptosis-inducing conditions [107].
More recently, the delivery of IGF-1 complexed PLGA
nanoparticles was shown to reduce cardiomyocyte
apoptosis and infarct size and to improve function in a
mouse infarct model [108]. One can envision the use of
such polymer systems for customized and effective
delivery of small molecules for a variety of functions in
multiple cell types in the diseased heart based on the
specificity of the chosen ligand.

Growth factor incorporation

The functionalization of soft materials can take advan-
tage of growth factor signaling to recruit specific cell
types and augment local regeneration. For example,
the delivery of SDF-1 using collagen- [109], hyaluronan-
based hydrogels [110], and decellularized skeletal
muscle-derived scaffolds [111] has been shown to
recruit greater numbers of bone marrow-derived pro-
genitor cells to zones of ischemic damage, resulting in
improved tissue morphology and/or function. In separ-
ate studies, VEGF and FGF released from a PLGA system
improved vascular density and also heart function up
to 3months post-injury [112–114]. A poly-L-lactide
(PLLA) scaffold releasing granulocyte colony-stimulating
factor (GCSF) induced angiogenesis and ECM re-organ-
ization leading to connective tissue deposition, scar
remodeling, and improved cardiac performance in a
rabbit chronic model of MI [115]. A commercially avail-
able ECM biomaterial patch (CorMatrix Cardiovascular
Inc.) enhanced with FGF-2 was shown to improve func-
tion and parameters of remodeling in a rat model of
infarction [116]. The release of an HGF fragment from
an ECM-derived hydrogel was able to prevent negative
remodeling post-MI [117]. As another example, a micro-
sphere/hydrogel combined approach was used to
deliver a heat shock protein (HSP27) to the myocar-
dium, which reduced infarct size and apoptosis, and
improved function [118]. Likewise, VEGF-loaded materi-
als, delivered either as a cardiac patch or an injectable
hydrogel, in a rat MI model led to improved angiogen-
esis and cardiac function [119,120]. Steele et al. [121]
reported on a polyethylene glycol vinyl sulfone-based
shear-thinning, self-healing, bioengineered hydrogel
(SHIELD) that flows as a solution when subjected to
shear force (i.e. injection) and then rapidly returns to a
gel state once the force is removed. When HGF was
encapsulated, the hydrogel increased arteriole density
and reduced infarct size in the rat MI model [121].
Similar to growth factor release, biopolymer mediated

gene delivery or RNA interference has also shown
promise for salvaging the myocardium [122–126].

Research is evolving towards recapitulating the
endogenous regenerative response in vivo, and there-
fore the delivery of 2 or more growth factors is being
investigated with greater frequency. For example,
Projahn et al. used a combined fast and slow bio-
degradable synthetic hydrogel approach to spatially
and temporally deliver Met-CCL5 and CXCL12 [127].
Their strategy was to delay early neutrophil invasion
using the fast degradable polymer (Met-CCL5), while
promoting the recruitment of hematopoietic progeni-
tors with the slow degradable polymer (CXCL12). This
strategy suppressed initial neutrophil invasion,
improved neovascularization, reduced apoptosis, and
preserved function post-MI [127]. In another approach,
Ruvinov et al. used a soft alginate system to deliver IGF-
1 and HGF in a model of MI [128]. Combined growth
factor delivery best preserved cardiac structure,
reduced fibrosis and also led to more blood vessels in
the infarcted myocardium. Evidence of cardiomyocyte
regeneration was also present, suggesting an effect on
cardiomyogenesis. Similarly, Salimath et al. used a PEG
hydrogel system to co-deliver HGF and VEGF [129].
Combined delivery led to improved progenitor cell
recruitment, reduced scar tissue, increased vascular
density and improved cardiac function. Interestingly,
few benefits were observed with single growth factor
delivery. Another combined delivery approach used
gelatin microspheres containing IGF-1 and VEGF [130].
The results suggested that IGF-1 reduced remodeling,
and improved cardiac function and capillary density
while reducing inflammation and apoptosis. Animals
receiving only VEGF did not display such marked
improvements, but co-delivery of both factors synergis-
tically enhanced vascular regeneration. Another com-
bination of FGF-2 and HGF using an alginate-based
system also reduced scar formation and improved vas-
cular regeneration and heart function [131]. FGF-2 has
also been combined with VEGF for delivery and release
from a modular starPEG (multi-armed polyethylene gly-
col)-heparin hydrogel system [132,133]. Their combined
delivery resulted in pro-angiogenic effects both in vitro
and in vivo compared to either growth factor alone. In
another report, FGF-2 and VEGF were embedded into
nanofibrous scaffolds made of poly (L-lactide-co-capro-
lactone) and poly (2-ethyl-2-oxazoline), and improved
neovascularization and left ventricular wall motion in a
rabbit acute MI model [134]. VEGF has also been com-
bined with angiopoietin-1 using polyethylene glycol-
fibrinogen (PF) hydrogels or with platelet-derived
growth factor using fibrin gels, and showed improved
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cardiac function in rat MI model via enhanced angio-
genesis [135–137]. Co-delivery of SDF-1 and angiogenic
peptides (Ac-SDKP) also showed synergistic benefits
when delivered to the infarcted myocardium with
superior angiogenesis, reduced infarct size, and
improved function compared to either factor delivered
alone [138]. A novel approach using platelet rich
plasma (PRP) combined with allopurinol, ascorbic acid,
and ibuprofen in a hyaluronic acid based hydrogel was
shown to improve vascular density, cardiac function
and ventricular volumes in surgically infarcted Yorkshire
pigs [139]. All of the growth factors described in these
studies are normally released by local cells after infarc-
tion and confer some survival or functional advantage
to the recovering myocardium. It is likely that the ideal
strategy to functionalize materials using growth factors
will involve multiple factors and controlled delivery.
These studies have shown that combination treatment
of at least 2 growth factors is superior to the delivery of
one alone.

Although growth factor functionalization studies typ-
ically aim to improve regeneration via controlled
release, some studies have attempted to localize
growth factors to the site of injury. For example, Zhang
et al. created a VEGF fusion protein that has a collagen-
binding domain [140]. Delivery of this fusion protein
retained the VEGF signal in the heart and reduced scar
size, improved vascular density and preserved cardiac
function. In other work, FGF-2 was immobilized into an
ECM-derived hydrogel by binding it to sulfated glycosa-
minoglycans [141]. This system prolonged FGF-2 reten-
tion and when applied to a rodent MI model, it
increased neovascularization with the generated blood
vessels forming anastomoses with the preexisting vas-
cular network. Schesny et al. recently reported on a tun-
able approach to release and preserve the bioactivity of
SDF-1 using a glycoprotein VI domain to anchor SDF-1
to collagen type 1 in the myocardium [142].

Functionalization using cell-responsive
peptide sequences

Some large ECM molecules, such as collagen and fibro-
nectin, have multiple peptide sequences that are recog-
nized by cells and may induce multiple regenerative
responses. Therefore, it may be advantageous to specify
where and when particular cells bind, and how they
behave in response to their interaction with their sub-
strate. The concept of designing a biomaterial to con-
trol a cell’s localization and function has been well-
described [143]. For example, the RGD sequence
(Arginine-Glycine-Aspartic acid tripeptide) has been

identified as the major cell-binding domain in fibronec-
tin [144]. Thus, functionalization of materials by pre-
senting the RGD sequence may confer advantages to
the regenerating myocardium via better adhesion and
cell integration. RGD incorporation into collagen scaf-
folds has been shown to improve cardiomyocyte con-
tractility and viability [145]. Similar effects were
observed when RGD was combined with an alginate
delivery system that reduced apoptosis, improved cell
adhesion and cardiomyocyte morphology similar to
those of normal cells [146]. An RGD-alginate system
was also able to improve vascular cell adhesion and
proliferation, and increase blood vessel formation in
vivo [147]. Recently, alginate scaffolds modified with
cyclic RGDFK (Arg-Gly-Asp-D-Phe-Lys)-peptides
improved survival of transplanted mesenchymal stem
cells (MSCs) and promoted angiogenesis in rat MI
model [135,148]. Other ECM-derived peptide sequences
that have been investigated as functional additions to
soft materials include YIGSR (laminin-derived) [149] and
QHREDGS (angiopoietin-1-derived) [150–152]. In one
study, YIGSR was immobilized into a self-assembled
peptide amphiphile nanomatrix in combination with a
nitric oxide donor system [153]. This functionalized
material was superior in capturing endothelial progeni-
tors and inducing their differentiation to endothelial
cells. In another approach, Zachman et al. used soluble
peptides delivered in a polymeric scaffold to mimic
ECM degradation products, which can act in a cytokine
fashion [154]. Two functional peptides, the pro-angio-
genic laminin-derived C16 and the anti-inflammatory
thymosin b4-derived Ac-SDKP, were loaded in collagen
hydrogels. Subcutaneous implantation of the scaffolds
up-regulated the angiogenic response, while down-reg-
ulating inflammation, thus holding promise as a strat-
egy for addressing ischemia and inflammation post-MI.
Thymosin b4 has also been successfully incorporated
into collagen-chitosan hydrogels for release in the heart
post-MI, resulting in superior vascular growth and myo-
cardial repair compared to unmodified hydrogels [155].
In another study, RoY, a 12 amino-acid synthetic pep-
tide specifically binding to the 78 kDa glucose-regu-
lated protein (GRP78) receptor, which is largely
expressed on vascular endothelial cells under hypoxia,
was conjugated to a thermosensitive chitosan chloride
hydrogel. The material induced angiogenic activity and
attenuated myocardial injury in rat MI model [156].
Although peptide-based strategies allow for control
over cell adhesion signal localization and density, the
peptides are often highly ubiquitous and not specific to
particular cell types. For example, many cell populations
will respond to the RGD signal, and it is therefore
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difficult to identify which cell types is directing regener-
ation in vivo.

Alteration of soft material composition

Changing the base composition is another strategy to
functionalize materials [89]. For example, many studies
have incorporated chitosan into soft material systems.
Chitosan has been reported to have anti-microbial and
pro-angiogenic properties, while being biocompatible
and biodegradable [157–159]. As the amount of chito-
san increased in a collagen-based hydrogel, the recruit-
ment of CXCR4þ cells, angiogenesis and the frequency
of VE-cadherinþ and vWFþ vascular cells all increased
[160]. Incorporation of chitosan into a hyaluronan/silk
fibrin patch that was applied to infarcted myocardium
led to increased wall thickness and improved function,
perhaps attributed to the improvements in vascular
density and paracrine secretion [161]. Xu et al. investi-
gated a thiolated collagen and OAC-PEG-OAC copoly-
mer as either stand-alone therapy or as an adjuvant to
cell therapy [66]. Delivering the hydrogel alone
improved vessel density, scar thickness and size, and
cardiac function, and delivering the hydrogel with
MSCs further augmented the benefits achieved [66].
Francis et al. reported that a human placenta-derived
hydrogel, rich in collagens, laminin, fibronectin, and
growth factors (e.g. VEGF-B, HGF) significantly reduced
scar volume and maintained electrophysiological activ-
ity of the surviving tissue in a rat MI model [162]. This
approach to functionalization offers an infinite amount
of combinations, and many types of ECM components
have been investigated as potential additions to soft
materials, such as laminin, heparan sulfate, chondroitin
sulfate and collagen IV [36]. However, the focus here
was not to detail all the various polymers being investi-
gated. For more information on this subject, please
refer to the following reviews [36,163–165].

Biofunctionalization for predicted
cellular responses

As many strategies for functionalization now employ
multiple methods (ligand/antibody, growth factor &

material incorporation), it is useful to summarize what
is known so far for each functionalization strategy.
Biofunctionalization strategies can be separated into 3
categories: (i) improving the regenerative response via
cell recruitment (Table 1); (ii) promoting vascular or car-
diac regeneration (Table 2); and (iii) improving heart
function and morphology (Table 3). These examples are
not exhaustive, but they are of importance to the field
because they are studies that demonstrate: (i) soft
material functionalization; (ii) application of the func-
tionalized material to a mammalian model of cardiac
ischemia, and (iii) morphological and/or functional
improvements that can be directly attributed to the
functionalization.

Biofunctionalization for cardiomyocyte
regeneration

Many of the benefits of biomaterial therapy for cardiac
repair can be attributed to myocardial salvage or pres-
ervation, neovascularization, and/or mechanical sup-
port. The de novo production of cardiomyocytes to
replace lost ones has proven to be a far more challeng-
ing problem. Consideration must be given to what
material properties will be necessary to drive myogene-
sis and to ensure long-term survival and the function of
new myocytes. Achieving cardiomyogenesis will likely
require a combinatorial approach taking advantage of a
number of soluble and insoluble cues, summarized in
Figures 2 and 3.

Pre-cardiac myocytes and mature cardiomyocytes

Cells respond to the elastic modulus, or stiffness, of
their environment. It is a critical guide for progenitor/
stem cell differentiation and the phenotype [166], and
it is also important for maintaining cardiomyocyte func-
tion and contraction [54,167]. Thus, materials to pro-
mote the endogenous repair program post-MI should
be designed with this in consideration. Recently, Young
and Engler improved cardiac maturation from pre-
cardiac cells using collagen I coated hydrogels on a
thiolated-hyaluronic acid (HA) template that possessed
time-dependent properties achieved via a Michael-type

Table 1. Methods of soft material functionalization to improve cell recruitment in the ischemic myocardium and the time (phase)
that treatment was applied.

Functionalization Time Effect on cell recruitment Reference

Chitosan-containing hydrogel Inflammatory phase " c-kitþ recruitment " SDF-1 production [194]
SDF-1-releasing PEG/fibrin patch Inflammatory phase " c-kitþ recruitment [195]
Sca-1 affinity collagen hydrogel n/a (LV free wall repair) " sca-1þ recruitment [100]
SDF-1 and Ac-SDKP releasing hydrogel Maturation phase " CXCR4þ recruitment [138]
SDF-1-conjugated muscle-derived scaffold n/a (femoral muscle implantation) " CXCR4þ recruitment [111]
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addition reaction with poly(ethylene glycol) diacrylate
cross-linker [168]. This dynamic material stiffened grad-
ually over time, and in culture produced a 3-fold
increase in mature cardiac specific markers and up to
60% more maturing muscle fibers from pre-cardiac

cells, compared to a control static hydrogel. Thus, time-
dependent stiffening, akin to the developing heart,
may prove to be an important functionalization param-
eter in regenerating cardiomyocytes. Similarly, Boothe
et al. reported that cardiomyocytes cultured on

Table 3. Methods of soft material functionalization to improve heart function and morphology after ischemic injury and the time
(phase) that treatment was applied.

Functionalization Time Effect on heart function/morphology Reference

Chitosan-containing hydrogel Inflammatory phase "EF, FS; #Fibrosis [159,194]
Chitosan and FGF-2-containing hydrogel Proliferative phase "EF, FS; #Fibrosis [196]
FGF-2-releasing PLGA scaffold Inflammatory phase "FS [113]
FGF-1-releasing PEG-PLGA microparticles Proliferative phase "EF [114]
FGF-2 and VEGF-embedded PLCL patch Inflammatory phase "EF [134]
HGF and IGF-1-releasing alginate microbeads n/a (hindlimb ischemia model) #Fibrosis [197]
HGF-releasing shear-thinning injectable hydrogel Inflammatory phase "EF [121]
VEGF-releasing PLGA Inflammatory phase "Wall thickness [199]
Thymosin B4-releasing collagen/chitosan hydrogel Inflammatory phase "Wall thickness [155]
Heat shock protein-releasing alginate hydrogel Inflammatory phase "EF [118]
VEGF-releasing calcium-alginate patch Proliferative phase "FS [119]
VEGF-releasing hydrogel Inflammatory phase "EF #Fibrosis [120]
VEGF and ANG-1-releasing hydrogel Inflammatory phase "EF, FAC; #Fibrosis [136]
VEGF and PDGF-releasing fibrin gel Inflammatory phase "FAC; #Fibrosis [137]
SDF-1 and SCF-containing gelfoam patch Maturation phase "Wall thickness [201]
PEG-DMA polymeric microstructures Proliferative phase "EF; #Fibrosis [65]
Tetronic-fibrinogen and PEG-fibrinogen conjugates Inflammatory phase "EF [62]
GCSF-releasing PLLA patch Maturation phase "EF, FS [115]
QHREDGS-conjugated collagen hydrogel Inflammatory phase "EF, FS [152]
RoY-conjugated chitosan chloride hydrogel Inflammatory phase "EF [156]

EF: ejection fraction; FS: fractional shortening.

Table 2. Methods of soft material functionalization to improve vascular and cardiac regeneration in the ischemic myocardium
and the time (phase) that treatment was applied.

Functionalization Time Effect on regeneration Reference

Chitosan-containing hydrogel Inflammatory phase " Vascular density [159,194]
Chitosan & FGF-2-containing hydrogel Proliferative phase " Vascular density [196]
FGF-2-releasing PLGA scaffold Inflammatory phase " Vascular density

" Perfusion
[113]

FGF-1-releasing PEG-PLGA microparticles Inflammatory or proliferative phase " Vascular density [113,114]
FGF-2 and VEGF-embedded PLCL patch Inflammatory phase " Vascular density [134]
HGF & IGF-1-releasing alginate microbeads n/a (hindlimb ischemia model) " Vascular density [197]
IGF-1-releasing gelatin Inflammatory phase " Vascular density [130]
VEGF-bound collagen patch n/a (RV free wall repair) " Vascular density [198]
VEGF-releasing PLGA Inflammatory phase " Vascular density [199]
VEGF & PDGF-BB-releasing alginate hydrogel Proliferative phase " Vascular density [200]
VEGF-releasing calcium-alginate patch Proliferative phase " Vascular density [119]
VEGF-releasing hydrogel Inflammatory phase " Vascular density [120]
VEGF and ANG-1-releasing hydrogel Inflammatory phase " Vascular density [136]
VEGF and PDGF-releasing fibrin gel Inflammatory phase " Vascular density [137]
Sca-1 affinity collagen hydrogel n/a (LV free wall repair) " Vascular density [100]
RGD-containing alginate hydrogel Maturation phase " Vascular density [147]
Thymosin B4-releasing collagen/chitosan hydrogel Inflammatory phase " Vascular density [155]
SDF-1 & SCF- containing gelfoam patch Maturation phase " Vascular density [201]
HGF & IGF-1-releasing alginate microbeads n/a (hindlimb ischemia model) " Ki-67þ (dividing)

cardiomyocytes
[197]

HGF-releasing shear-thinning injectable hydrogel Inflammatory phase " Vascular density [121]
Thiolated collagen and OAC-PEG-OAC hybrid hydrogel Inflammatory phase " Vascular density [66]
SDF-1 and Ac-SDKP releasing hydrogel Maturation phase " Vascular density [138]
PRP releasing hydrogel Inflammatory phase " Vascular density [139]
HGF fragment releasing ECM-derived hydrogel Maturation phase " Vascular density

" Cardiomyocyte area
[117]

Engineered CCL5 and CXCL12 releasing biodegradable hydrogel Inflammatory phase " Vascular density [127]
SDF-1-conjugated muscle-derived scaffold n/a (femoral muscle implantation) " Vascular density [111]
GCSF-releasing PLLA patch Maturation phase " Vascular density [115]
RoY-conjugated chitosan chloride hydrogel Inflammatory phase " Vascular density [156]
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polyacrylamide hydrogels with a 9 kPa elastic modulus
(in the range of native myocardium) had the longest
action potential duration [169]. In contrast, Chopra
et al. suggested that material stiffness mimicking the
physiological heart may be unnecessary [170]. Using HA
hydrogels functionalized with integrin ligands, it was

demonstrated that cells did not respond to traditional
mechanical cues [170]. Cardiomyocytes reassembled
myofibrils and produced well-developed and functional
sarcomeres on a material with mechanical properties
far from what is considered conducive to cardiomyo-
genesis. This suggests that the need for static or

Figure 3. Possible mechanisms for biomaterial-mediated cardiac repair. For optimal cardiac repair/regeneration, transplanted soft
materials will need to activate efficient reparative processes. Ideally, on a broad scale, this will consist of (i) implantation of a
material with bio-mimicking properties followed by possible growth factor release and/or host cell recognition of incorporated
ligand(s); (ii) integration of the material with the host tissue including progenitor cell infiltration, proliferation, and differentiation;
and (iii) cardiomyogenesis and neovascularization resulting in replacement of the lost/damaged tissue.

Figure 2. The next generation of “smart” materials for repair and regeneration of the myocardium. A combinatorial approach for
the next generation of soft materials is likely required for achieving in situ cardiomyogenesis. Naturally-derived or synthetic mate-
rials as scaffolds, patches or injectable hydrogels will likely require both angiogenic and cardiomyogenic properties. (i) The encap-
sulation of soluble growth factors can generate chemical gradients and signals to attract and cue endogenous progenitors. (ii)
Tuned mechanical properties provide the necessary structure for lineage specific differentiation and time-dependency may more
closely mimic the native developmental program. (iii) Conductivity will be necessary to ensure proper electrophysiological matur-
ity and cell-to-cell coupling. (iv) Ligand incorporation ensures cell-specific attachment in the micro-environment. Together, these
various design elements may serve to preserve host myocardium and attract local progenitors to the site of injury, promoting
both cardiomyogenesis and neovascularization, and ultimately replacing scarred myocardium with de novo myocardium.
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dynamic mechanically optimized soft materials
could, potentially, be circumvented. Altogether, the
functionalization of soft materials will likely require
time-dependent mechanical and topographical proper-
ties, or chemical cues to activate intersecting signal-
ing cascades.

Embryonic stem cells and induced pluripotent
stem cells

Embryonic stem cells (ESCs) and inducible pluripotent
stem (iPS) cells offer a unique opportunity to study
post-mitotic cells such as cardiomyocytes [171–173].
However, cardiomyocytes derived from either cell
source are, appreciably, different. Much work has been
conducted on tuning biomaterials to correct some of
these deficits in vitro. Borrowing from these studies, we
may derive insights into how soft materials could be
functionalized for in vivo applications to drive endogen-
ous cardiomyogenesis. For example, Nunes et al. dem-
onstrated that iPS cells were able to mature into more
functionally representative cardiomyocytes on a colla-
gen I biowire platform when the cells were subjected
to a high frequency electrical stimulation protocol
[174]. Compared to non-stimulated or low frequency
stimulated controls, cardiomyocytes derived from the
high frequency protocol demonstrated pronounced sar-
comeric organization including more H zones per sarco-
mere, desmosomes along the plasma membrane, and
mitochondria localized closer to the contractile appar-
atus. For more regarding electrical stimulation systems
for cardiac tissue engineering, readers are referred to
Tandon et al [175]. Mechanical stimulation alone does
not produce electrophysiologically mature cardiomyo-
cytes [176]. Chang et al. demonstrated that electrical
stimulation increased the expression of cardiac genes
(e.g. HCN1, MLC2V, SERCA, and GATA4), promoted ven-
tricular-like phenotypes, and improved the calcium han-
dling of ESC-derived cardiomyocytes [177]. Likewise, Ma
et al. reported that electrical stimulation accelerated
cardiac differentiation of human iPS cells and facilitated
the functional maturation of cardiomyocytes through
activation of Ca2þ/PKC/ERK pathways. In addition, the
transplantation of derived cardiomyocytes pretreated
with electrical stimulation effectively incorporated and
repaired the infarcted heart of MI mice [178]. Another
challenge to consider is the isolation of islands of cells
within polymer scaffolds, separating them from their
neighbors and in turn impeding electrical signal propa-
gation through a network of cells. Engineered conduct-
ive materials are presenting as potential strategies to
solve this issue [179–182]. Using gold nanowires within

alginate scaffolds, Dvir et al. showed calcium transient
propagation and improved cardiac myocyte alignment,
compared to non-conductive scaffold controls [180].
Similar results were reported by Hsiao et al. via cultur-
ing neonatal cardiomyocytes on their conductive polya-
niline (PANI) poly(lactic-co-glycolic acid) (PLGA)
nanofibrous meshes [179]. Other types of conductive
materials, such as a polypyrrole-chitosan hydrogel [181]
and a p-p conjugation-containing hyaluronic acid
hydrogel [182], were also reported to improve electric
signal propagation resulting in preserved cardiac func-
tion. Thus, future materials may need to be functional-
ized with electrophysiological properties in order to
best support cardiac regeneration.

Challenges that limit clinical application

Despite the promising results of biomaterial treatment
for MI in preclinical models, only a limited number of
materials have moved forward with clinical trials and
the results can be considered, at best, modest so far
[2,183–185]. Although not the focus of this review, we
provide the following section as a brief introduction to
the hurdles currently limiting the translational of mate-
rials to the clinic for the treatment of MI. Very few clin-
ical trials for cardiac biomaterial therapy have been
undertaken, and the discrepancy between the preclin-
ical benefits and the less encouraging clinical trials
identifies some issues that need to be considered. For
one, the limited number of clinical trials may be a con-
sequence of the low availability of the needed clinical
grade primary materials or the difficulty/cost associated
with generating and manufacturing them. In this
regard, some functionalized biomaterials may be more
easily and/or quickly translated if new more affordable
manufacturing procedures could be developed. For
example, one group used an engineered fragment of
hepatocyte growth factor, which was less expensive to
produce and yet possessed superior stability while
maintaining its therapeutic effects [117,186], and deliv-
ered it to the MI heart in an injectable ECM hydrogel.
Similar engineering principles could be applied in gen-
erating peptide fragments of other growth factors or
ECM proteins for use in functionalized materials.

Other considerations that may not always be at the
forefront during the material design phase include the
sensitivity of the composite materials to sterilization,
the generation of standard operating procedures to
ensure quality control of the biomaterial product,
together with the optimal time window and delivery
route to be used for administering these strategies.
Failure to incorporate these factors into material
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development at the early stages may limit or delay
translational research once pre-clinical evaluation is
complete. Another issue to contend with is the regula-
tory requirement(s) for translating biomaterials to the
clinic. Due to the inherent complexity of biomaterials
and their functionalized products, it can be difficult to
regulate them under the same criteria used for more
traditional drug therapies. This in turn makes it difficult
to navigate the process of moving a biomaterial prod-
uct from the laboratory to the patient. As a result, many
regulatory bodies, including those in the U.S., Europe
and Japan, have been implementing changes to help
regenerative therapies gain accelerated and conditional
approval to better conduct clinical trials and to better
meet the demands of patients [187–189]. While future
efforts should focus on optimizing the therapeutic
potential of biofunctionalized materials, it may be
equally important to consider the above-mentioned
challenges in order to maximize the chance of clinical
success. For further information on this subject, please
refer to the following reviews [71,95,190–193].

Conclusions

For soft materials to yield effective cardiac therapies,
methods must be developed to maximize their regen-
erative potential. Such strategies may employ the
incorporation of regenerative signals, in the form of
growth factors, peptides and progenitor cell signals.
With a better understanding of what regenerative proc-
esses exist in the body and which ones are insufficient,
our repertoire of soft materials can be further enhanced
via functionalization.

The ultimate goal of cardiac tissue engineering is to
regenerate a tissue that mimics the healthy myocar-
dium. The ideal biomaterial will incorporate into the
host tissue, turnover and be replaced with healthy,
viable tissue. Functionalization allows biomaterialists to
guide the regeneration process by providing functional
cues that direct the cellular response, from invading
inflammatory cells to cardiomyocyte renewal/replace-
ment and recruited circulating progenitor cells. As these
functional cues are evaluated in the pre-clinical setting,
future studies will be able to draw from them and
better improve the soft materials that are being
used today.
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