研究亮点

研究亮点
当前位置:首页 > 研究亮点 > 研究亮点
Biomacromolecules 2016, 17, 3602-3608

      Low tolerability and tumor selectivity restricts many potent anticancer drugs including mertansine from wide clinical use. Here, glutathione-activatable hyaluronic acid-SS-mertansine prodrug (HA-SSDM1) was designed and developed to achieve enhanced tolerability and targeted therapy of CD44+ human breast tumor xenografts. DM1 was readily conjugated to HA using 2-(2-pyridyldithio)-ethylamine as a linker. Notably, HA-SS-DM1 with a high DM1 content of 20 wt % had a mean size of ∼170 nm at concentrations above 0.2 mg/mL while transformed into unimers upon dilution to 0.04 mg/mL. HA-SS-DM1 exhibited a superior targetability to MCF-7 cancer cells with an exceptionally low IC50 of 0.13 μg DM1/mL. The pharmacokinetic studies displayed that Cy5-labeled HA-SSDM1 had an elimination half-life of 2.12 h. Notably, HA-SS-DM1 displayed better tolerability with a maximum-tolerated dose 4-fold higher than free DM1. Cy5-labeled HA-SS-DM1 quickly accumulated in the MCF-7 tumor, the fluorescence intensity of which was maximized at 24 h post injection and kept strong in 48 h. The tumor Cy5 level reached 8.17%ID/g at 24 h. The therapeutic results demonstrated that HA-SS-DM1 effectively inhibited tumor growth at 800 μg DM1 equiv/kg while causing reduced side effects as compared to free DM1. Glutathione-cleavable HA-SS-DM1 prodrug with superior drug content, excellent targetability, enhanced tolerability, and easy large-scale synthesis appears to be a highly promising alternative to clinically used Trastuzumab emtansine (T-DM1) for targeted breast tumor therapy.

Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile Synthesis and Targeted Breast Tumor Therapy. (Biomacromolecules 2016, 17, 3602-3608)

返回