HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor

Lin Ding,†§ Wenxing Gu,†‡§ Yifan Zhang,† Shujing Yue,† Huanli Sun,‡§† Yifan Zhang,‡§ Shujing Yue,† Huanli Sun,‡§† Jeroen J. L. M. Cornelissen,† and Zhiyuan Zhong*‡

†Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
‡Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

ABSTRACT: Monoclonal antibodies can effectively target to tumors in patients, as validated by antibody−drug conjugates (ADCs). The clinically used ADCs, nevertheless, are restricted to toxins only and suffer from low drug content, excessive use of antibody, and high cost. Here, we report on trastuzumab-decorated disulfide-cross-linked polymersomes (Tra-Ps) for specific delivery of epirubicin hydrochloride (EPI·HCl) to HER2-positive SKOV-3 ovarian tumor. EPI·HCl-loaded Tra-Ps (Tra-Ps-EPI) with a small size of 50–60 nm and varying Tra surface densities (0.5 to 2.4 Tra per Ps) were conveniently obtained via post-conjugation of thiolated trastuzumab onto the surface of maleimide-functionalized Ps-EPI with a drug loading content of 12.7 wt %. Interestingly, Tra-Ps with 1.3 trastuzumab on the surface exhibited a 6-fold higher binding affinity to the HER2 extracellular domain than that of native trastuzumab. In vitro studies revealed that Tra-Ps-EPI with long-term storage stability could rapidly release drugs under a reductive condition and efficiently deliver a large amount of EPI·HCl to HER2-positive SKOV-3 cells, leading to stronger cytotoxicity than the nontargeted Ps-EPI. Moreover, Tra-Ps-EPI displayed a long circulation time (ca. 8 h), deep tumor penetration, and superior tumor growth inhibition in SKOV-3 ovarian tumor-bearing nude mice, which were more effective than free EPI·HCl and nontargeted Ps-EPI. These HER2-specific reduction-sensitive immunopolymersomes with high loading of epirubicin emerge as an attractive treatment for HER2-positive tumors.

1. INTRODUCTION

Over the past decades, monoclonal antibody-based cancer therapeutics have sparked great attention as a result of their high selectivity and affinity offering precision drug delivery. For instance, trastuzumab (Herceptin, Tra), a marketed humanized monoclonal antibody, has been clinically used as monotherapy or in combination with chemotherapeutics (such as anthracyclines, docetaxel, etc.) to treat HER2-overexpressed breast and gastric cancers. Although an evident role in cancer therapy is observed, acquired drug resistance and severe systemic toxicity derived from chemotherapy remain to be major challenges causing high morbidity and mortality. In light of its high specificity to HER2 receptors that are overexpressed on breast, ovarian, and gastric cancer cells, Tra was further utilized as a unique targeting ligand for antibody−drug conjugates (ADCs). FDA-approved Kadcyla (ado-trastuzumab emtansine), as a typical example, has demonstrated significant therapeutic efficacy against HER2-overexpressed metastatic breast cancers. However, ADCs including Kadcyla are limited to the use of highly toxic drugs as payloads and suffer drawbacks of low drug-to-antibody ratio (3.5−4 drug molecules per antibody) and, consequently, high antibody consumption.

To overcome the problems of ADCs, various Tra-decorated immunonanosystems have been engineered for HER2-targeted delivery of either conventional chemotherapeutics or potent warheads for ADCs. These immunonanosystems are able to deliver high amounts of drugs using a few Tra per particle. For example, Tra-conjugated immunoliposomes efficiently delivered paclitaxel and rapamycin to HER2-positive SK-BR-3 breast cancer cells, inducing ca. 3-fold higher toxicity in vitro and 2-fold stronger tumor inhibition rate in vivo than the nontargeted control. Tra-modified docetaxel-loaded PLGA nanoparticles were constructed with a drug-to-antibody molar ratio of over 200, which was 50 times higher than that of ADCs. Thus obtained immunoparticles realized targeted delivery of docetaxel to SK-BR-3 cancer cells, resulting in a lower half-maximal inhibitory concentration (IC50) compared...
to the counterpart without Tra. HER2-targeted delivery of doxorubicin by Tra-conjugated chitosan-pluronic nanosystems was also reported with enhanced tumor accumulation and growth inhibition in SK-BR-3 breast tumor-bearing mice. It should be noted, however, that the performance of Tra-decorated nanosystems is far from optimal, partly due to their poor in vivo stability, large size, and/or uncontrolled drug release.

Disulfide-cross-linking has been recently corroborated as an attractive strategy to simultaneously address the circulation stability and drug release issues of polymeric nanomedicines. Based on dithiolamine trimethylene carbonate (DTC)-containing amphiphilic copolymers, we developed robust, simple, and disulfide-cross-linked polymersomes that exhibited enhanced tumor therapy with varying drugs including doxorubicin, proteins, or siRNA. Here, we report on small-sized, HER2-specific, and reduction-sensitive immunopolymersomes (Tra-Ps) with a high loading of epirubicin hydrochloride (EPI-HCl) for targeted treatment of SKOV-3 ovarian tumor (Scheme 1). Tra-Ps-EPI was prepared via post-conjugation of thiolated Tra on the surface of maleimide-functionalized polymersomal epirubicin. Interestingly, our results showed that Tra-Ps had a stronger binding affinity to the HER2 extracellular domain than native Tra. EPI-HCl-loaded Tra-Ps, with a high drug-to-antibody ratio of ca. 1700, revealed enhanced specificity and cellular uptake in HER2-positive SKOV-3 cells, leading to effective tumor suppression in vivo.

2. EXPERIMENTAL SECTION

2.1. Construction of EPI-HCl-Loaded Maleimide-Functionalized Disulfide-Cross-Linked Polymersomes (Mal-Ps-EPI). Mal-Ps-EPI was prepared from maleimide-functionalized poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate) (Mal-PEG-P(TMC-DTC)) and PEG-P(TMC-DTC) copolymers via a pH gradient method, as previously reported for DOX-HCl-loaded polymersomes. PEG-P(TMC-DTC) (Mn = 5.0–(14.8–2.0) kg/mol, Mn/Mn = 1.1) and Mal-PEG-P(TMC-DTC) (Mn = 7.5–(15.5–2.3) kg/mol, Mn/Mn = 1.2) were synthesized according to our previous reports. Their 1H NMR spectra and GPC traces are shown in Figures S1 and S2. Typically, 50 mL of Mal-PEG-P(TMC-DTC) and PEG-P(TMC-DTC) solution in DMF (40 mg/mL, molar ratio = 5/95) was injected into 450 mL of stirred citrate buffer (pH 4.0, 10 mM). Concentrated sodium phosphate was added to adjust the pH to 7.8 followed by addition of 80 mL of EPI-HCl (5 mg/mL) and overnight incubation (37 °C, 200 rpm). Mal-Ps-EPI was purified and concentrated to a Ps concentration of 20 mg/mL using a Pellicon tangential flow filtration system (MWCO = 5000 Da, Millipore). Size distribution of Mal-Ps-EPI was investigated using dynamic light scattering (DLS). Drug loading efficiency (DLE) and drug loading content (DLC) were calculated based on the EPI-HCl amount determined via UV–vis using the formulas as follows:

\[
\text{DLE(\%)} = \frac{\text{weight of loaded drug}}{\text{weight of drug in feed}} \times 100
\]

\[
\text{DLC(\%)} = \frac{\text{weight of loaded drug}}{\text{total weight of loaded drug and polymer}} \times 100
\]

Ps-EPI was fabricated using PEG-P(TMC-DTC) only under otherwise the same procedure as Mal-Ps-EPI. Blank polymersomes (Ps and Mal-Ps) were constructed similarly by directly injecting polymer solution to phosphate buffer (PB, pH 7.4, 10 mM) followed by dialysis (MWCO = 3500 Da) against PB.

2.2. Fabrication of Trastuzumab-Decorated Polymersomal EPI (Tra-Ps-EPI). Tra-Ps-EPI was fabricated via Michael addition of thiolated trastuzumab (Tra-SH) with Mal-Ps-EPI. To obtain Tra-SH, Tra (1.0 mg, 25 mg/mL) was incubated with 10-fold or 20-fold molar excess of 2-iminothiolane (2 mg/mL, PB with 5 mM EDTA, pH 8.0) under constant shaking for 1 h at 25 °C. The resulting Tra-SH was purified by a Zeba spin desalting column, and its concentration was calibrated using the Tra standard curve measured by HPLC (150 mM PB/ACN = 90:10; flow rate, 1 mL/min; 214 nm). The thiolation degree of Tra-SH was quantified using Ellman’s assay. Briefly, 900 μL of Tra-SH solution (1 mg/mL) was incubated with 100 μL of DTNB (3.96 mg/mL) for 15 min at room temperature followed by absorption measurement at 412 nm with UV–vis. The thiol functionality of Tra-SH was calculated to be ca. 2.7 thiol groups per Tra based on the glutathione (GSH) standard curve with concentrations ranging from 0.01 to 0.1 mM.

Freshly obtained Tra-SH with 10-fold molar excess of 2-iminothiolane was immediately added to the Mal-Ps-EPI dispersion (20 mg/mL) with molar ratios of Tra-SH to Mal preset as 1:6, 1:3, and 1:1. After overnight reaction at 37 °C, Tra-Ps-EPI was washed...
The binding affinity and kinetics of Tra-Ps or free Tra with the HER2 extracellular domain (HER2\textsubscript{ECD}) were followed by surface plasma resonance (SPR, Biacore T200) at 25 °C. HER2\textsubscript{ECD} protein was coupled to a CM5 chip by an amine coupling kit using sodium acetate (pH 4.5, 10 mM) as the immobilization buffer. In brief, carboxylic groups of CMS chip were activated with a solution of EDC (75 mg/mL) and NHS (12 mg/mL) at a flow rate of 10 μL/min for 10 min. Then, HER2\textsubscript{ECD} protein solution (4 μg/mL) was injected and immobilized on the chip to achieve a final resonance units (RU) value of 165.6. Ethanolamine-HCl was used to block the other channel and served as a reference. HBS-EP+ (pH 7.4, 10 mM HEPES with 150 mM NaCl, 3 mM EDTA, and 0.05% P-20) was used as the running buffer. All buffers were filtered through a 0.22 μm filter prior to use.

For binding assay, Tra-Ps or free Tra with Tra concentrations ranging from 3.1 to 50.0 μg/mL were analyzed. Ps with a concentration of 4 mg/mL was utilized as a control. Samples for kinetic/affinity studies were run at a flow rate of 5 μL/min followed by a 2 min waiting period for dissociation before chip regeneration. Data were processed using Biacore T200 Evaluation Software version 2.0.

2.4. Assessment of HER2 Expression Levels of Tumor Cells.

SKOV-3, MDA-MB-231, and BT474 human cancer cells were planted into a six-well plate with a density of 1×104 cells per well. The collected supernatants were analyzed by HPLC to determine the amount of unconjugated Tra-SH based on which we determined the conjugation efficiency. To further determine the Tra density on the surface of polymersomes, the molecular weight and aggregation number of Mal-Ps were measured via static light scattering (SLS). The number of Tra per polymersome was calculated according to the following formula:

\[
\text{number of Tra per Ps} = \frac{\text{weight of conjugated Tra/mol weight of Tra}}{\text{weight of polymersomes/mol weight of each polymerosome}}.
\]

The size and PDI of Tra-Ps-EPI were measured and further tracked over 15 days of storage in the fridge by DLS. Tra-functionalized blank polymersomes (Tra-Ps) were prepared similarly to Tra-Ps-EPI. The secondary structure of Tra decorated on the polymersomes was detected using the circular dichroism spectrum (CD).

2.5. Cellular Uptake of EPI via Polymersomes.

HER2ECD protein solution (4 μg/mL) was injected and immobilized on the chip to achieve a final resonance units (RU) value of 165.6. Ethanolamine-HCl was used to block the other channel and served as a reference. HBS-EP+ (pH 7.4, 10 mM HEPES with 150 mM NaCl, 3 mM EDTA, and 0.05% P-20) was used as the running buffer. All buffers were filtered through a 0.22 μm filter prior to use.

For binding assay, Tra-Ps or free Tra with Tra concentrations ranging from 3.1 to 50.0 μg/mL were analyzed. Ps with a concentration of 4 mg/mL was utilized as a control. Samples for kinetic/affinity studies were run at a flow rate of 5 μL/min followed by a 2 min waiting period for dissociation before chip regeneration. Data were processed using Biacore T200 Evaluation Software version 2.0.

2.6. MTT Assays.

The cytotoxicity of Tra-Ps-EPI and Ps-EPI was studied by confocal laser scanning microscopy (CLSM) using both HER2-positive SKOV-3 cells and HER2-negative MDA-MB-231 cells. Cells were placed onto glass slides containing 24-well plate (8×104 cells/well) and allowed to adhere for 1 day. Tra-Ps-EPI and Ps-EPI were then added separately to maintain a final EPI-HCI concentration of 11.2 μg/mL. After 4 h incubation at 37 °C, adhered cells were gently washed three times with PBS, fixed using 4% paraformaldehyde for 20 min, and washed three times with PBS. Cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI, 5 μg/mL) for 3 min followed by six times washing with PBS. Glass slides with stained cells were collected and mounted onto microscope slides for CLSM measurements.

2.7. In Vivo Pharmacokinetics, ex Vivo Imaging, and Tumor Penetration.

All animal experiments were performed according to the protocols approved by Laboratory Animal Center and Animal Care and Use Committee of Soochow University. For the pharmacokinetics studies, Tra-Ps-EPI or Ps-EPI with an EPI-HCI dosage of 11.2 mg/kg was intravenously injected to female BALB/c mice weighing around 20 g (n = 3). At predetermined time points (0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 24 h), blood samples were collected into heparinized tubes and subjected to centrifugation (3000 rpm, 10 min) to take out 10–15 μL of plasma to be used for preparing samples. Plasma samples were run at a flow rate of 10 μL/min followed by a 2 min waiting period for dissociation before chip regeneration. Data were processed using Biacore T200 Evaluation Software version 2.0.

2.8. In Vivo Antitumor Efficacy.

The in vivo therapeutic efficacy of Tra-Ps-EPI, Ps-EPI, and free EPI-HCI was investigated in SKOV-3 ovarian tumor-bearing mice. The different formulations were administered at an EPI-HCI dosage of 11.2 mg/kg via a tail vein on day 0, when the average tumor volume of each group (n = 5) reached about 150 mm3. The drug administration was repeated every 4 days for 6 injections in total except for free EPI-HCI. PBS was injected as a control. Tumor growth and the weight of mice were monitored every 2 days, wherein tumor volumes (V) were calculated from the tumor length (L) and width (W) measured using calipers (V = 0.5 × L × W2). On day 30, tumors from all the mice were collected and weighed. Meanwhile, tumor and major organs from one mouse of each group were harvested and stained with hematoxylin and eosin (H&E) for histological analysis.

2.9. Statistical Analysis.

All data were presented as mean ± standard deviation (SD). Ordinary one-way ANOVA was utilized to compare three or more groups, when the result was significant (p < 0.05), and Tukey’s post hoc test was then performed for all pairwise comparisons. *p < 0.05, **p < 0.01, and ***p < 0.001.

3. RESULTS AND DISCUSSION

3.1. Fabrication of Trastuzumab-Decorated Polymersomes.

Trastuzumab-modified polymersomes (Tra-Ps) were obtained via coassembly of 95 mol % PEG-P(TMC-DTC) with 5 mol % Mal-PEG-P(TMC-DTC) followed by Michael addition with thiolated trastuzumab (Tra-SH). Maleimide-functionalized polymersomes (Mal-Ps) showed an average size of 49.2 nm and an aggregation number of ca. 447, as determined by DLS and SLS, respectively (Figure S3). By setting the molar ratios of Tra’s reagent to antibody at 10:1 followed by another 68 h incubation. Ten micromoles of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (5 mg/mL in PBS) was added into each well and incubated for 4 h. The generated formazan in each well was dissolved in DMSO (150 μL) upon careful removal of the medium, and the absorbance at 570 nm was measured using a microplate reader (Thermo, EL808). Cell viability (%) was relative to the control cells incubated with PBS only and calculated by comparing their absorbance at 570 nm.

DOI: 10.1021/acs.biomac.9b00947 Biomacromolecules 2019, 20, 3885–3883
and 20:1, Tra-SH conjugates with an average of 2.7 and 5.4 thiol groups per Tra were prepared, respectively, as determined by Ellman’s assay. The former one was utilized for the following studies to maintain a relatively high activity and targetability of Tra. Overnight treatment of Mal-Ps with Tra-SH at Tra-to-Mal molar ratios of 1:30, 1:12, and 1:6 yielded Tra-Ps with Tra densities of 0.5, 1.3, and 2.5 per polymersome (x means Tra density), respectively, as quantified by HPLC (Table S1). Notably, all Tra-Ps exhibited similar sizes (50.4–51.2 nm) and zeta potentials (−0.38 to 0.09 mV) to that of Mal-Ps (49.2 nm, −2.27 mV) and Ps (48.9 nm, −1.23 mV). Circular dichroism (CD) spectra revealed that Tra decorated on the surface of polymersomes possessed a similar secondary structure as native Tra (Figure 1A).

To test the affinity of Tra-Ps binding to HER2, the HER2 extracellular domain (HER2_ECD) was modified on the surface of a CMS chip via EDC/NHS chemistry to achieve a final response of 165.6 RU, as determined by SPR. Binding assays revealed that Tra-Ps, regardless of Tra density, showed similar binding responses to free Tra with RU values of about 74 when fixing the Tra concentration at 25.0 μg/mL (Figure 1B). The relatively slow binding rate of Tra-Ps is most possibly due to their slower diffusion compared to free Tra. On the contrary, no appreciable binding of unmodified Ps on the chip was observed even at a concentration of 4 mg/mL, which was over 4-fold higher than that of Tra-Ps. These results indicated that Tra was successfully conjugated to the surface of Mal-Ps and its binding affinity to HER2_ECD was significantly improved. To further quantify the binding of Tra-Ps and free Tra to HER2_ECD, a series of Tra-Ps and Tra with Tra concentrations of 3.1 to 50.0 μg/mL were flowed over the chip, and the kinetic constants were measured (Figure 1C,D). It was found that Tra-Ps displayed about a 5-fold lower association constant (Kₐ) and a 29-fold lower dissociation constant (K₆) than those of native Tra, yielding a much smaller equilibrium dissociation constant (K_D, 7 pM versus 42 pM) and thus stronger binding affinity (Table 1). This is in line with the reports stating that K_D for monoclonal antibodies with antigens is in the order of picomolar 33,34 and antibody-decorated nanoparticles bear higher binding affinity than free antibodies possibly as a result of multivalent effects.35,36

3.2. Preparation of Trastuzumab-Decorated EPI-HCl-Loaded Polymersomes. Utilizing the pH gradient method that was previously applied for DOX-HCl-loaded polymersomes and liposomes,28,39 a large batch of Ps-EPI (50.8 nm) and Mal-Ps-EPI (54.2 nm) with a DLC of 12.7 wt % was acquired at a theoretical DLC of 16.7 wt %. The loading capability of polymersomes for EPI-HCl was similar to that for DOX-HCl as a result of their similar physicochemical properties.39,40 Mal-Ps-EPI was then reacted with Tra-SH overnight as that for blank polymersomes with subsequent ultracentrifugation, yielding Tra-Ps-EPI with negligible EPI-HCl leakage during the fabrication (Figure 2A). HPLC analysis of the collected supernatant indicated that surface densities of thus obtained Tra-Ps-EPI were 0.5, 1.4, and 2.4 at Tra-to-Mal feeding molar ratios of 1:6, 1:3, and 1:1, respectively. Figure 2B and Table 2 reveal that all Tra-Ps-EPI had a similar size (53.2–58.3 nm), size distribution, and zeta potential, which were close to those of Ps-EPI and Mal-Ps-EPI. Moreover, Tra-Ps-EPI exhibited high stability during storage in the fridge over a period of 15 days (Figure 2C). In vitro release studies confirmed that Tra-Ps-EPI released 93% of EPI-HCl in 24 h under a reductive condition (10 mM GSH), while ca. 35% release was observed in PB (pH 7.4, 10 mM) only (Figure 2D). This release profile is similar to that of Ps-EPI and also other disulfide-cross-linked polymeric nanomedicines.41,42

| Table 1. Affinity Constants of Native Tra and Tra-Ps Binding to HER2_ECD |
|-----------------|-----------------|-----------------|
| sample | Kᵢ (1/μM) | Kᵢ (μM) |
| Tra | 6.7 × 10⁻⁸ | 2.8 × 10⁻⁶ | 4.2 × 10⁻¹¹ |
| Tra₁.₃-Ps | 1.4 × 10⁻⁸ | 9.6 × 10⁻⁶ | 6.9 × 10⁻¹² |

3.3. Cellular Uptake and in Vitro Antitumor Activity of Tra-Ps-EPI. HER2 expression levels of several human cancer cells including BT474 breast cancer cells, SKOV-3 ovarian cancer cells, and MDA-MB-231 triple-negative breast cancer cells were detected by flow cytometry using anti-HER2 antibody-FITC. It was found that HER2 is highly expressed on the surface of SKOV-3 and BT474 cells, while MDA-MB-231 cells showed low HER2 expression (Figure 3), which is in line with previous reports.33–46 We hereafter utilized MDA-MB-231 cells as a HER2-negative control.

Cellular uptake and intracellular drug release behavior of Tra₁.₃-Ps-EPI in HER2-positive SKOV-3 and HER2-negative MDA-MB-231 cells were followed by CLSM. The acquired images showed strong EPI-HCl fluorescence inside SKOV-3 cells particularly in the nuclei after 4 h incubation with Tra-Ps-EPI, supporting its efficient cellular uptake as well as rapid EPI-HCl release and nuclei accumulation (Figure 4A). By contrast, Ps-EPI-treated SKOV-3 cells displayed weak EPI fluorescence. These results corroborated the enhanced cellular uptake and active targeting ability of Tra-Ps-EPI, as also observed for other Tra-functionalized nanosystems.37–51 For HER2-negative MDA-MB-231 cells, EPI fluorescence intensity was almost the same for Tra-Ps-EPI and Ps-EPI (Figure 4B), similar to Ps-EPI-treated SKOV-3 cells (Figure 4A), confirming the high HER2 specificity of Tra-Ps-EPI. We further analyzed the same EPI fluorescence intensity in the cells. The results showed that SKOV-3 cells incubated with Tra-Ps-EPI had ca. 6-fold higher
EPI fluorescence than those with Ps-EPI and MDA-MB-231 cells treated with Tra-Ps-EPI or Ps-EPI (Figure 4C).

MTT assays revealed that Tra-Ps-EPI, regardless of the Tra density, induced ca. 2-fold higher toxicity toward HER2-positive SKOV-3 cells than the nontargeted Ps-EPI control (Figure 5A), corroborating the enhanced intracellular delivery and release of EPI·HCl. This is consistent with the SPR data that showed comparable binding affinity of Tra-Ps-EPI with different Tra densities. In contrast, similar anticancer activity to HER2-negative MDA-MB-231 cells was observed for Ps-EPI and Tra1.4-Ps-EPI (Figure 5B), which displayed an about 5-fold higher IC50 (11.0 μg/mL) than Tra-Ps-EPI against SKOV-3 cells. These results further support the fact that Tra improves the specific cellular uptake and cytotoxicity of Ps-EPI in HER2-positive cells. Importantly, blank Tra-Ps and native Tra were nontoxic against SKOV-3 cells even at a Ps concentration of 0.5 mg/mL and corresponding Tra concentration of 10 μg/mL, which was much lower than the effective concentration in SKOV-3 cells (Figure 5C,D). This indicated that the higher toxicity of Tra-Ps-EPI than Ps-EPI was mainly due to the Tra-directed targeting effect.

3.4. In Vivo Pharmacokinetics, ex Vivo Imaging, and Tumor Penetration

The stability in vivo is a critical issue for achieving long circulation and therefore tumor accumulation of nanomedicines. Hence, the pharmacokinetics of Ps-EPI and Tra-Ps-EPI were first investigated using BALB/c mice. As shown in Figure 6A, Tra-Ps-EPI exhibited a long elimination half-life of 8.0 h, which is comparable with the nontargeted Ps-EPI and other PEG-P(TMC-DTC)-based disulfide-cross-linked polymersomal drugs, while it is markedly longer than that of free EPI·HCl. Biodistribution of Tra-Ps-EPI and Ps-EPI in subcutaneous SKOV-3 ovarian tumor-bearing nude mice was evaluated at 8 h post-injection. The ex vivo fluorescence images displayed that Tra-Ps-EPI accumulated more in the tumor with stronger EPI·HCl fluorescence than that of nontargeted Ps-EPI control (Figure 6B).

Tumor penetration is also a critical step for nanomedicines to realize efficient cancer treatment. Monoclonal antibodies were reported with limited tumor penetration as a result of a specific binding site barrier and/or possible nonspecific interactions with extracellular components. To evaluate the effect of Tra decoration on the tumor penetration performance of Ps-EPI, the distribution of Tra-Ps-EPI and Ps-EPI in the...
SKOV-3 tumor was examined at 24 h post-intravenous injection using CLSM with immunofluorescent staining. As shown in Figure 6C and Figure S4, Tra-Ps-EPI was distributed throughout the whole tumor slice and even with stronger EPI-HCl fluorescence perfused in the tumor interstitium up to 125 μm away from tumor vessels compared to Ps-EPI. This indicated that Tra-Ps-EPI has better tumor-penetrating ability, likely due to its enhanced binding affinity toward tumor cells. The longer circulation, higher tumor accumulation, and efficient tumor penetration laid the foundation of Tra-Ps-EPI for HER2-targeted tumor therapy.

3.5. Antitumor Efficacy of Tra-Ps-EPI in SKOV-3 Ovarian Tumor-Bearing Mice. The in vivo therapeutic efficacy of Tra-Ps-EPI was investigated using subcutaneous SKOV-3 ovarian tumor-bearing nude mice with an EPI-HCl dosage of 11.2 mg/kg. Tra-Ps-EPI with repeated injections every 4 days for six times largely suppressed the tumor growth over a period of 30 days (***p < 0.001 versus PBS) (Figure 7A,B). Its tumor growth inhibition effect was much stronger than that induced by nontargeted Ps-EPI (**p < 0.01), supporting the fact that Tra decoration significantly improved the tumor-targeting ability of Ps-EPI and enhanced the therapeutic efficacy. Free EPI-HCl, although exhibited some tumor inhibition effect (*p < 0.05 versus PBS), caused significant body weight loss (>15%) during the treatment even with only three injections, revealing its high systemic toxicity against nude mice (Figure 7A−C). Importantly, no obvious body weight change was detected for polymersomal EPI (Tra-Ps-EPI and Ps-EPI)-treated groups, indicating their high tolerability in nude mice. The images of tumor harvested on day 30 (Figure 7D) confirmed the same trend of tumor volume as that in Figure 7B (PBS > Ps-EPI > EPI-HCl > Tra-Ps-EPI), further corroborating the superior antitumor effect of targeted Tra-Ps-EPI. Compared with other chemotherapeutics-based polymeric nanomedicines targeting to EGFR, CD44, or αvβ3 integrins, Tra-Ps-EPI induced the obviously higher tumor inhibition rate of SKOV-3 ovarian tumor-bearing mice.63−66 Moreover, apparent tumor cell shrinkage and incomplete cell membranes were observed in the H&E-stained tumor tissue for Tra-Ps-EPI, which was significantly more than that of Ps-EPI- and free EPI-HCl-treated group (Figure 7E). It should further be noted that polymersomal EPI caused little damage to the
major organs including heart, liver, spleen, and kidney (Figure S5).

4. CONCLUSIONS

We have shown that trastuzumab-decorated multifunctional polymersomal epirubicin (Tra-Ps-EPI) can be conveniently prepared with controllable Tra surface density, small size, high EPI loading, superb stability, HER2-targeting ability, and GSH-sensitive immunopolymersomes. These HER2-targeted Ps-EPI to SKOV-3 cells and Tra-Ps-EPI to HER2-negative MDA-MB-231 cells. Moreover, Tra-Ps-EPI with high in vivo stability displays a long circulation time and deep tumor penetration, resulting in nearly complete tumor growth suppression and negligible systemic toxicity. These HER2-specific reduction-sensitive immunopolymersomes may provide an appealing strategy for targeted tumor chemotherapy.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biomac.9b00947.

Details on materials, characterization, and cell culture; figures showing 1H NMR spectra and GPC traces of PEG-P(TMC-DTC) and Mal-PEG-P(TMC-DTC) and SLS measurement of Mal-Ps; and characteristics of blank Ps with various Tra surface densities (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: sunhuanli@suda.edu.cn (H.S.).
*E-mail: yzzhong@suda.edu.cn. Tel/Fax: +86-512-65880098 (Z.Z.).

ORCID
Huanli Sun: 0000-0001-6287-1555
Jeroen J. L. M. Correliessen: 0000-0002-9728-5043
Zhiyuan Zhong: 0000-0003-4175-4741

Author Contributions
*L.D. and W.G. contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51633005 and 51603138) and the Natural Science Foundation of Jiangsu Province (BK20160322).

REFERENCES

