Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers

Caihong Zhua, Sooyeon Jungs, Sibin Luoa, Fenghua Menga, Xiulin Zhua, Tae Gwan Parkb, Zhiyuan Zhongb,*,

a Biomedical Polymers Laboratory, and Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
b Department of Biological Sciences, and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

ARTICLE INFO
Article history:
Received 21 October 2009
Accepted 23 November 2009
Available online 5 December 2009

Keywords:
Micelles
siRNA
Gene delivery
Paclitaxel
Drug delivery

ABSTRACT
Biodegradable cationic micelles were prepared from PDMAEMA–PCL–PDMAEMA triblock copolymers and applied for the delivery of siRNA and paclitaxel into cancer cells. PDMAEMA–PCL–PDMAEMA copolymers were readily obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN–PCL–CPADN (CPADN: 4-cyano-2-nitrobenzoic acid dithionaphthalenoate; PCL: 3600 Da) as a macro-RAFT agent. The molecular weights of PDMAEMA blocks, controlled by monomer/CPADN–PCL–CPADN mole ratios, varied from 2700, 4800 to 9100 (denoted as polymer 1, 2 and 3, respectively). These triblock copolymers formed nano-sized micelles in water with positive surface charges ranging from +29.3 to +35.5 mV. Both micelles 1 and 2 revealed a low cytotoxicity. Gel retardation assay showed that micelles 1 and 2 could effectively complex with siRNA at and above N/P ratios of 4/1 and 2/1, respectively. Notably, GFP siRNA complexed with micelle 1 exhibited significantly enhanced gene silencing efficiency as compared to that formulated with 20 kDa PDMAEMA or 25 kDa branched PEI in GFP-expressed MDA-MB-435-GFP cells. Moreover, micelle 1 loaded with paclitaxel displayed higher drug efficacy than free paclitaxel in PC3 cells, due to most likely improved cellular uptake. The combinatorial delivery of VEGF siRNA and paclitaxel showed an efficient knockdown of VEGF expression. Confocal laser scanning microscopy studies on GFP siRNA complexed with nile red-loaded micelle revealed that nile red was delivered into GFP-expressed MDA-MB-435-GFP cells and that GFP expression was significantly inhibited. These results demonstrated that cationic biodegradable micelles are highly promising for the combinatorial delivery of siRNA and lipophilic anti-cancer drugs.

1. Introduction

RNA interference (RNAi) mediated by small interfering RNA (siRNA) has emerged as one of the most advanced and versatile tools for biological research as well as a one of the most promising therapeutic strategy for various human diseases such as viral infections, genetic diseases, cardiovascular disorders, and cancers [1,2]. Unlike chemotherapeutics, siRNA exhibits in general a high specificity and a low non-specific toxicity. However, siRNA can not be applied directly in that it will be rapidly degraded in culture and in vivo, its cellular internalization is poor due to its negative surface charge, and it may induce type I interferon responses and stimulate the production of pro-inflammatory cytokines [3]. A variety of delivery systems, either viral or non-viral, have been investigated for siRNA delivery in vitro and in vivo. Despite their high transfection efficiency, viral vectors are confronted with production, cost, and safety issues. Recently, non-viral vectors in particular cationic polymers have received growing interests due to many advantages they offer over their viral counterparts including improved safety, low immune responses, enabling repeated uses, and ease of production [4–6]. However, in comparison with DNA, siRNA is short and most synthetic carriers including polyethylenimine (bPEI) and chitosan exhibit insufficient condensation and colloidal stability, resulting in low level of gene knockdown [7]. In the past several years, different strategies to improve siRNA complexation have been developed [8,9], which include development of siRNA bio-conjugates [10–12], hydrophobic modification of polycations [13], and increase of polycation charge density [14].

The carrier-induced toxicity has been another challenge for cationic polymers. Usually, in order to condense siRNA, polycations
are required to have high molecular weights and high charge densities, which are often associated with acute and/or long-term toxicity. Recently, different types of biodegradable polycations such as poly(β-amino esters) [15], bioreducible poly(amino ester glycol urethane) [16], bioreducible poly(amido amine)s [17,18], and bioreducible polyspermines [19] have been explored as low cytotoxic carriers to deliver siRNA into cells. Notably, Wang and coworkers reported that cationic degradable micelles self-assembled from amphiphilic tri-block copolymer PEG-b-poly(c-caprolactone)-b-poly(2-aminoethyl ethylene phosphate) mediated efficient siRNA delivery [20]. Lavasanifar and coworkers reported that MDR-1-targeted siRNA formulated with micelles based on spermine or tetraethylene-pentamine-grafted PEG-b-poly(3-caprolactone) exhibited efficient gene silencing for P-glycoprotein expression [21]. The cationic micelles are particularly appealing because they have the potential to simultaneously deliver genes and hydrophobic anti-cancer drugs [22–25]. The co-delivery of paclitaxel and an interleukin-12-encoding plasmid DNA from self-assembled cationic core-shell nanoparticles have shown to efficiently suppress cancer growth in a 4T1 mouse breast cancer model [23].

In this paper, we report on cationic micelles based on well-defined PDMAEMA–PCL–PDMAEMA triblock copolymers for the combinatorial delivery of siRNA and paclitaxel (Scheme 1). These triblock copolymers were designed on the basis of the following reasons: (i) PDMAEMA has received a lot of attention for gene delivery due to its relatively low toxicity and high buffer capacity [26–30], (ii) combination of biodegradation and low molecular weight PDMAEMA will further reduce their in vitro and in vivo toxicity, (iii) formation of micelles may result in largely improved siRNA condensation ability and thereby transfection activity, (iv) micelles are one of the most efficient nano-carriers for hydrophobic anti-cancer drugs, and (v) they can be conveniently prepared with controlled macromolecular structures and molecular weights by living radical polymerization.

2. Materials and methods

2.1. Materials

Ethylene glycol (99%, Alfa Aesar) was dried over CaO and distilled under vacuum. ε-Caprolactone (ε-CL, 99%, Alfa Aesar) was dried over CaH2 for 48 h at room temperature and distilled under reduced pressure before use. Toluene and methylene dichloride were dried by refluxing over sodium wire and CaH2, respectively, and distilled prior to use. 2-(N,N-dimethylaminoethyl) methacrylate (DMAEMA, 97%, Alfa Aesar) was purified by passing through a basic alumina column before use. 4-Cyanopentanoic acid dithiobenzoate (CPADN) was synthesized according to the described procedure for 4-cyanopentanoic acid dithiobenzoate [31]. Stannous octoate (Sn(Oct)2, 95%, Sigma), 4-dimethylamino pyridine (DMAP, 99%, Alfa Aesar), dicyclohexyl carbodiimide (DCC, 99%, Alfa Aesar), paclitaxel (>99%, TCI, Tokyo, Japan), and nile red (>99%, Sigma) were used as received.

Green fluorescence protein (GFP) siRNA (sense: 5'-AACUUCAGGGUCAGCUUG-CdTdT-3', anti-sense: 5'-GCAAGCUGACCCUGAAGUdTdT-3') was obtained from Bioneer Co. (Daejeon, Korea). Targeting human VEGF siRNA (sense: 5'-GGAGUCCACCCUGAAGUdTdT-3', anti-sense: 5'-GAUCUCAUGGCUCCAGUCdTdT-3') was obtained from Qiagen Inc. (Valencia, CA). MDA-MB-435-GFP (human breast cancer cell) cells stably expressing GFP protein donated by Samyang Corp. (Daejeon, South Korea) were maintained in a DMEM medium containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 μg/mL) at 37 °C in a humidified incubator with 5% CO2. PC-3 (human prostate carcinoma cells, Korean Cell Line Bank, KCLB, Seoul, Korea) were maintained in an RPMI1640 medium containing 10% FBS, penicillin (100 U/mL),

Scheme 1. Illustration of biodegradable cationic micelles self-assembled from PDMAEMA–PCL–PDMAEMA triblock copolymers for combinatorial delivery of hydrophobic anti-cancer drugs and siRNA into cancer cells.
and streptomycin (100 μg/mL) at 37 °C in a humidified incubator with 5% CO₂, FBS (Fetal bovine serum), DMEM (Dulbecco’s Modified Eagle Medium) and RPMI 1640 (Roswell Park Memorial Institute 1640 medium) were obtained from Invitrogen (Carlsbad, CA) and penicillin/streptomycin solution was purchased from Sigma–Aldrich (St. Louis, MO). Cell counting kit-8 (CCK-8) was obtained from Dojindo Laboratories (Kumamoto, Japan).

2.2. Synthesis of PDMAEMA–PCL–PDMAEMA triblock copolymers

2.2.1. Synthesis of PDMAEMA–PCL–PDMAEMA triblock copolymers

Under a nitrogen atmosphere, to a dried reaction flask equipped with a magnetic stir bar, ethylene glycol (72.5 mg, 1.17 mmol), Sn(Oct.)₂ (118.4 mg, 0.29 mmol), 1.5 mL THF was added into a 10 mL Schlenk flask. The flask was sealed and placed into an oil bath thermostated at 100 °C and the reaction was allowed to proceed for 24 h. The polymerization was terminated with excess hydrochloride, and the resulting polymer was isolated by precipitation in cold diethyl ether, filtration, and drying in vacuo. Yield: 83.3%. ¹H NMR end group analysis revealed Mn = 3600. Mw (GPC) – 7000, PDI (GPC) – 1.26. ¹H NMR (400 MHz, CDCl₃): δ 4.27 (s, –OCOCH₂CH₂–), 4.06 (t, –COCH₂CH₂CH₂CH₂O–), 2.30 (t, –COCH₂CH₂CH₂CH₂O–), 1.64 (m, –COCH₂CH₂CH₂CH₂O–), 1.38 (m, –COCH₂CH₂CH₂CH₂O–), 3.64 (t, –COCH₂CH₂CH₂CH₂O–), 1.99 (s, –OCOCH₂CH₂–C(CN)(CH₃)SCS₅H₇); 2.44 (m, –OCOCH₂CH₂–C(CN)(CH₃)SCS₅H₇). The chemical shifts were calibrated against solvent signal of CDCl₃. The molecular weight and polydispersity (PDI) of the polymers were determined with a Waters 1515 gel permeation chromatography (GPC) instrument equipped with a Styragel HR 5E THF column (Waters Chromatography) following a INLINE precolumn and a differential refractive index detector. The measurements were performed using THF as eluent at a flow rate of 0.6 mL/min at 35 °C and a series of polystyrene as standards.

2.2.2. Synthesis of macro-RAFT agent CPADN–PCL–CPADN

PDMAEMA–PCL–PDMAEMA triblock copolymers were prepared by RAFT polymerization of DMAEMA using CPADN–PCL–CPADN as a macro-RAFT agent. In a typical example, under a nitrogen atmosphere. DMAEMA (0.19 g, 1.24 mmol), CPADN–PCL–CPADN (0.13 g, 0.031 mmol), AIBN (1.0 mg, 0.0062 mmol) and 1.5 mL THF was added into a 10 mL Schlenk flask. The flask was sealed and placed into oil bath thermostated at 60 °C. The mixture proceeded with magnetic stirring for 24 h. The resulting copolymer was isolated by precipitation in n-hexane, filtration and drying in vacuo. Yield: 72–80%. ¹H NMR (400 MHz, CDCl₃): δ 7.52, 7.85, and 8.16 (naphthalene protons); 4.27 (s, –OCOCH₂CH₂O–); 1.05/0.89, 1.86, 2.28, 2.56, and 4.07 (PDMAEMA block); 1.39, 1.65, 2.28, and 4.07 (PCL block).

2.3. Characterization

¹H NMR spectra of the polymers were recorded on an INOVA 400 MHz nuclear magnetic resonance instrument using deuterated chloroform (CDCl₃) as a solvent. The chemical shifts were calibrated against solvent signal of CDCl₃. The molecular weight and polydispersity (PDI) of the polymers were determined with a Waters 1515 gel permeation chromatography (GPC) instrument equipped with a Styragel HR 5E THF column (Waters Chromatography) following a INLINE precolumn and a differential refractive index detector. The measurements were performed using THF as eluent at a flow rate of 0.6 mL/min at 35 °C and a series of polystyrene as standards.

2.4. Preparation and characterization of micelles

Micelles were prepared by directly dissolving PDMAEMA–PCL–PDMAEMA copolymers in HAc–NaAc buffer (20 mM, pH 5.0) overnight at a concentration of 0.5 mg/mL with magnetic stirring followed by sonication for 30 min. The sizes and the zeta potentials of the self-assembled micelles were determined at 25 °C by Zetasizer Nano ZS (Malvern Instruments).

The critical micelle concentration (CMC) was determined using pyrene as a fluorescence probe. The concentration of block copolymer varied from 1 × 10⁻³ to 0.5 mg/mL and the concentration of pyrene was fixed at 0.6 μM. The fluorescence spectra were recorded using FL3920 fluorescence spectrometer with the excitation wavelength of 330 nm. The emission fluorescence at 372 and 383 nm were monitored. The CMC was estimated as the cross-point when extrapolating the intensity ratio 372/383 at low and high concentration regions.

2.5. Preparation and characterization of drug-loaded micelles

PTX was loaded into micelles by dropwise adding 5 mL HAc–NaAc buffer (20 mM, pH 5.0) to 0.5 mL of THF solution of block copolymer (5 mg/mL) and 200 μL of PTX solution in DMSO (5 mg/mL), sonication for 1 h, and dialysis against HAc–NaAc buffer (20 mM, pH 5.0) with an MWCO of 3500 at r.t. The final concentration of micelles was ca. 0.5 mg/mL. 0.2 mL of micelle solution was freeze-dried, the residue was dissolved in acetonitrile, and the amount of PTX was determined by HPLC ($1100

![Scheme 2. Synthesis of PDMAEMA–PCL–PDMAEMA triblock copolymers.](image-url)
Fig. 1. 1H NMR spectra (CDCl$_3$, 400 MHz) of HO–PCL–OH (A); CPADN–PCL–CPADN (B); and PDMAEMA–PCL–PDMAEMA (polymer 1) (C).
2.6. Gel retardation assay

The siRNA binding ability of micelles was studied by agarose gel electrophoresis. The complexes were prepared at different N/P ratios (1/1, 2/1, 4/1, and 6/1). Electrophoresis was carried out on 1% agarose gel with a current of 100 V for 10 min in TAE buffer solution (40 mM Tris–HCl, 1 v/v % acetic acid, and 1 mM EDTA). The retardation of the complexes was visualized by staining with ethidium bromide. The final siRNA concentration was 1 μg per well.

2.7. In vitro cytotoxicity measurements

The cytotoxicity of micelles and PTX-loaded micelles was assessed with CCK-8 viability assay against MDA-MB-435-GFP (human breast cancer cell) and PC3 (human prostate carcinoma cell) cells. MDA-MB-435-GFP cells (5000 cells/well) and viability assay against MDA-MB-435-GFP (human breast cancer cell) and PC3 cells were plated on a 12-well plate at a density of 1.5 × 10^5 cells/well. After 24 h of culture, the medium was removed, the cells were washed with PBS, and 400 μL of serum-free medium and 100 μL of siRNA complexes solution containing 0.25 μg siRNA were added. The final concentration of siRNA in each well was 0.5 μg/mL. The cells were incubated with siRNA complexes for 4 h at 37 °C. The transfection medium was discarded and supplemented with fresh medium containing 10% FBS. After additional 6 h of incubation, the medium was again replaced with fresh medium containing 10% FBS and 20 μg/mL of heparin. The conditioned medium was collected after 18 h and subjected to analysis to determine the amount of VEGF secreted from the cells by enzyme-linked immunosorbent assay (Quantikine human VEGF immuno-detection kit, R&D systems, Minneapolis, MN), following the manufacturer’s instructions.

2.8. Preparation of siRNA complexes

100 μL of micelle or drug-loaded micelle solution in HAc–NaAc buffer at different concentrations ranging from 39.9 μg/mL to 145.1 μg/mL was added to 100 μL siRNA solution in HAc–NaAc buffer (5 μg/mL). The solution was gently vortexed and incubated at r.t. for 15 min.

2.9. In vitro transfection and gene silencing

2.9.1. Transfection with GFP siRNA

MDA-MB-435-GFP cells were plated on a 12-well plate at a density of 1.5 × 10^5 cells/well. After 24 h of culture, the medium was removed, the cells were washed with PBS, and 400 μL of serum-free medium and 100 μL of siRNA complexes solution containing 0.25 μg siRNA were added. The final concentration of siRNA in each well was 0.5 μg/mL. The cells were incubated with siRNA complexes for 4 h at 37 °C. Then, the transfection medium was discarded and supplemented with fresh medium containing 10% FBS. The cells were cultured for another 48 h, washed twice with cold PBS and lysed with 1% Triton-X100. The GFP expression level of cell lysates was analyzed with a spectrophotofluorometer (SLM-AMINCO 8100, SLM Instruments Inc., Urbana, IL) at an excitation wavelength of 488 nm and an emission wavelength of 525 nm.

2.9.2. Transfection with VEGF siRNA

PC-3 cells were plated on a 12-well plate at a density of 1.5 × 10^5 cells/well. After 24 h of culture, the medium was removed, the cells were washed with PBS, and 400 μL of serum-free medium and 100 μL of siRNA complexes solution containing 0.25 μg siRNA were added. The final concentration of siRNA in each well was 0.5 μg/mL. The cells were incubated with siRNA complexes for 4 h at 37 °C. The transfection medium was discarded and supplemented with fresh medium containing 10% FBS. After additional 6 h of incubation, the medium was again replaced with fresh medium containing 10% FBS and 20 μg/mL of heparin. The conditioned medium was collected after 18 h and subjected to analysis to determine the amount of VEGF secreted from the cells by enzyme-linked immunosorbent assay (Quantikine human VEGF immuno-detection kit, R&D systems, Minneapolis, MN), following the manufacturer’s instructions.

2.10. Confocal laser scanning microscopy

The simultaneous delivery of drug and gene was observed by confocal laser scanning microscope (LSM510, CARL-ZEISS INC., USA). For confocal microscopy observation, GFP siRNA was used to examine the GFP silencing and nile red was used as a hydrophobic drug model. Firstly, MDA-MB-435 cells were seeded at a density of 2.0 × 10^5 cells/well in two 4-well chamber slides overnight. The cells were transfected with nile red-loaded micelle/siRNA complexes for 4 h at 37 °C in serum-free medium. One slide was taken out and washed with cold PBS four times, and the cells were fixed with 1% para-formaldehyde solution for 30 min at 4 °C. The other slide, the culture medium was removed and replenished with fresh medium containing 10% FBS, and the cells were cultured for another 48 h. The slide was washed with PBS four times and fixed with para-formaldehyde solution. GFP inhibition and nile red uptake by cells were imaged by confocal laser scanning microscope.

3. Results and discussion

3.1. Synthesis of PDMAEMA–PCL–PDMAEMA triblock copolymers

PDMAEMA–PCL–PDMAEMA triblock copolymers were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using...
CPADN–PCL–CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate) as a macro-RAFT agent (Scheme 2). CPADN–PCL–CPADN was readily synthesized by coupling CPADN to dihydroxy PCL prepolymer (HO–PCL–OH) with a M_n of 3600 Da in the presence of DCC and catalytic amount of DMAP. 1H NMR showed complete disappearance of signals at $d_{3.64}$ attributable to methylene protons neighboring to the hydroxyl end group of PCL prepolymer and a new set of signals at $d_{7.49–8.14}$ and $d_{2.44–2.67}$ assignable to CPADN (Fig. 1A and B). The integral ratio between resonances at $d_{4.27}$ (ethylene protons in the middle of PCL prepolymer) and $d_{1.99}$ (methyl protons of CPADN) was close to the theoretical value of 2:3, confirming successful synthesis of CPADN–PCL–CPADN. The polymerization of DMAEMA was performed in THF at 60°C under nitrogen atmosphere for 24 h and the resulting block copolymers were isolated by precipitation from n-hexane. The results of polymerization are shown in Table 1. 1H NMR displayed clearly peaks characteristic of both PDMAEMA and PCL blocks (Fig. 1C). The M_n values of PDMAEMA could be estimated by comparing the intensities of signals at $d_{4.07}$ and $d_{2.56}$ which were attributable to the methylene protons neighboring to the ester bonds of PCL and PDMAEMA and the methylene protons next to amine group of PDMAEMA, respectively. Notably, results showed that these block copolymers had M_n PDMAEMA varying from 2700, 4800 to 9100 (denoted as polymer 1, 2 and 3, respectively), which correlated well with the monomer to CPADN–PCL–CPADN molar feed ratios (Table 1). Gel permeation chromatography (GPC) further showed that these block copolymers had controlled molecular weights with moderate polydispersities of 1.15–1.42 (Table 1). Hence, PDMAEMA–PCL–
PDMAEMA triblock copolymers with different molecular weights can be easily obtained by controlling monomer to CPADN–PCL–CPADN molar feed ratios.

3.2. PDMAEMA–PCL–PDMAEMA micelles and siRNA complexation

PDMAEMA–PCL–PDMAEMA triblock copolymers were soluble in water to afford micelles with particle sizes ranging from 53.6 to 132.2 nm and positive surface charges ranging from +29.3 to +35.5 mV (Table 1). Notably, copolymer with the intermediate PDMAEMA (4.8 kDa) had the smallest particle size, and copolymer with the shortest PDMAEMA (2.7 kDa) revealed the highest surface charge. The critical micelle concentration (CMC) determined using pyrene as a fluorescence probe showed low CMC values of 15.8–24.0 mg/L (Table 1), which decreased with increasing PDMAEMA block length.

3.3. Cytotoxicity of PDMAEMA–PCL–PDMAEMA micelles

The cytotoxicity of PDMAEMA–PCL–PDMAEMA micelles was evaluated by CCK assay using MDA-MB-435-GFP cells. The cells were incubated with varying amount of micelles for 24 h. The commonly used polymeric transfer agent, 25 kDa bPEI, was used as a control. The results showed that all three micelles were less toxic than 25 kDa bPEI.
and that the cytotoxicity of PDMAEMA–PCL–PDMAEMA micelles decreased with decreasing the molecular weights of PDMAEMA block (Fig. 3). It should be noted that both micelles 1 and 2 maintained over 80% cell viability at a concentration of 10 μg/mL, indicating that these cationic micelles have low cytotoxicity. Furthermore, compared to 25 kDa bPEI, these triblock copolymers have low molecular weights and are biodegradable, which will result in largely decreased long-term toxicity. In the following studies, micelles 1 and 2 were selected for siRNA and paclitaxel delivery.

3.4. In vitro siRNA transfection

The siRNA transfection activities of PDMAEMA–PCL–PDMAEMA micelles were investigated using MDA-MB-435-GFP cells and GFP siRNA (GFP siRNA 0.5 μg/mL). The transfection was performed at different N/P ratios varying from 12/1 to 36/1, and cells were treated with siRNA complexes for 48 h. 25 kDa bPEI and 20 kDa PDMAEMA homopolymer were employed as positive controls. Remarkably, micelles showed largely enhanced siRNA transfection activity as compared to PDMAEMA homopolymer (Fig. 4). The silencing efficiency increased with increasing N/P ratios. It is interesting to note that micelle 1 though with shorter PDMAEMA block (2.7 kDa) displayed much higher siRNA transfection activity than micelle 2, achieving over 70% silencing efficiency at an N/P ratio of 36/1. In contrast, 20 kDa PDMAEMA revealed practically no silencing effect at an N/P ratio of 36/1 under otherwise the same transfection conditions. The other often applied control, 25 kDa bPEI, showed only 40% silencing efficiency at its optimal N/P ratio of 16/1, which was much lower than micelle 1. The largely enhanced siRNA transfection of PDMAEMA–PCL–PDMAEMA micelles as compared to PDMAEMA homopolymer is most likely due to their improved siRNA condensation and endosomal escaping ability.

3.5. CCK assay and in vitro delivery of paclitaxel

Micelles have been extensively investigated as nano-carrier systems for the delivery of potent hydrophobic anti-cancer drugs such as doxorubicin and paclitaxel (PTX) [32,33]. In this study, PTX was used as a model drug and loaded into micelle 1 with a drug loading content of 6.8 wt.%. The drug efficacy of PTX-loaded micelle was evaluated in PC3 cells by CCK assay. The cells were incubated with varying amount of PTX-loaded micelles for 24 h. Interestingly, PTX-loaded micelles demonstrated clearly high drug efficacy as compared to free PTX (Fig. 5), which is most likely due to enhanced endocytosis of micelles.

3.6. Combinatorial delivery of VEGF siRNA and paclitaxel in PC3 cells

PDMAEMA–PCL–PDMAEMA micelles capable of efficiently delivering both siRNA and paclitaxel into cells are of particular interest for combinational cancer therapy. Herein, co-delivery of VEGF siRNA and paclitaxel in human prostate carcinoma PC-3 cells was investigated. VEGF has a predominant role in tumor angiogenesis [34,35]. VEGF siRNA has shown to effectively suppress neovascularization and tumor growth [36,37]. As for GFP siRNA, VEGF siRNA complexed with cationic micelles at an N/P ratio of 24/1 showed higher gene silencing efficiency in PC-3 cells than 25 kDa bPEI at its optimal formulation (Fig. 6). The combinatorial delivery of VEGF siRNA and paclitaxel using PDMAEMA–PCL–PDMAEMA micelles resulted in significantly lower VEGF expression as compared to delivery of VEGF siRNA alone, reaching a high silencing efficiency of ca. 85% (Fig. 6). The confocal microscopy studies using GFP siRNA and Nile red as a hydrophobic drug model in MDA-MB-435-GFP cells showed clearly that Nile red was transported inside cells and GFP protein expression was significantly down-regulated (Fig. 7). These cationic micelles capable of efficiently co-delivering siRNA and hydrophobic anti-cancer drugs into cancer cells are highly promising for combination cancer therapy.

4. Conclusions

We have demonstrated that cationic biodegradable micelles based on low molecular weight PDMAEMA–PCL–PDMAEMA triblock copolymers mediate efficient in vitro siRNA transfection, affording a significantly higher gene knockdown efficiency than 25 kDa bPEI at its optimal N/P ratio and 20 kDa PDMAEMA homopolymer under otherwise the same conditions. Furthermore, we have also shown that these micelles are capable of efficiently delivering paclitaxel into cancer cells, resulting in an enhanced drug efficacy as compared to free paclitaxel. The co-delivery of VEGF siRNA and paclitaxel has revealed a further improved gene knockdown efficiency. Importantly, these micellar carriers are easy to prepare with controlled molecular characteristics, are biodegradable, and have low cytotoxicity. These biodegradable micellar carriers are promising in combination cancer therapy with therapeutic siRNA and chemotherapeutics.

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC 50703028, 50973078, 20874070 and 20974073), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (08KJB150016), Science and Technology Development Planning of Jiangsu Province (No. BK2007702), Program of Innovative Research Team of Soochow University, and the A3 (China–Japan–Korea) Program on Gene Delivery from the National Research Foundation of Korea (NRF), Republic of Korea.

Appendix

Figures with essential color discrimination. Figs. 1, 4–7 in this article are difficult to interpret in black and white. The full color images can be found in the on-line version, at doi:10.1016/j. biomaterials.2009.11.077.

